粒子群优化
水准点(测量)
光学
非线性系统
计算机科学
超参数
调制(音乐)
Levenberg-Marquardt算法
信号(编程语言)
激光器
算法
生物系统
材料科学
物理
人工神经网络
人工智能
声学
生物
量子力学
程序设计语言
地理
大地测量学
作者
Andrea Marchisio,Enrico Ghillino,Vittorio Curri,Andrea Carena,Paolo Bardella
出处
期刊:Optics Letters
[The Optical Society]
日期:2023-11-27
卷期号:49 (1): 125-125
被引量:2
摘要
We propose a direct particle swarm optimization (PSO) method for extracting the parameters of a physical model describing the behavior of vertical-cavity surface-emitting lasers (VCSELs), starting from the light-current (L-I) characteristics and the small signal modulation (S21) responses, at different currents and temperatures. With an optimal choice of hyperparameters of the algorithm, the method is able to predict parameters that accurately reproduce the behavior of the device. Its prediction capabilities are compared to those of two commonly used nonlinear optimizers (Interior Point and Levenberg–Marquardt), to benchmark its performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI