Engineering Saccharomyces cerevisiae for high-efficient production of ursolic acid via cofactor engineering and acetyl-CoA optimization

代谢工程 生物化学 酿酒酵母 发酵 异源的 三萜 化学 辅因子 异源表达 酵母 重组DNA 医学 基因 病理 替代医学
作者
Nan Jia,Jingzhi Li,Guo-Wei Zang,Yu Yuan,Xiaojv Jin,Yuna He,Meilin Feng,Xuemei Na,Ying Wang,Chun Li
出处
期刊:Biochemical Engineering Journal [Elsevier BV]
卷期号:203: 109189-109189 被引量:9
标识
DOI:10.1016/j.bej.2023.109189
摘要

Ursolic acid (UA) is an important plant-derived pentacyclic triterpene with many physiological and pharmacological activities. Although the heterologous biosynthesis of UA in microbes has been achieved, the titer is too low to be applied for commercial industrialization. The low efficiency of key enzymes such as cytochrome P450 enzyme (CYP450) and the imbalance between endogenous metabolism and exogenous pathways are considered key elements. To solve the problem, high-efficient CYP450s and its compatible cytochrome P450 reductases (CPRs) were screened and characterized. Ej8656, a CYP450 from Eriobotrya japonica, combined with LjCPR, a CPR from Lotus japonicus, showed the best performance in an engineered α-amyrin producing Saccharomyces cerevisiae with a UA titer of 43.0 mg/L. Furthermore, combining cofactor engineering of NADH/NADPH and optimization of acetyl-CoA supply, UA production was improved to 61.0 mg/L. In addition, fermentation optimization was carried out using the constructed S. cerevisiae and the titer of UA was increased to 90.0 mg/L. Finally, 2.33 g/L UA and 1.21 g/L α-amyrin were obtained after scale-up experiment in a 5 L fermenter. The UA production was 70.0-fold of the original strain WN1, and is the highest titer reported in S. cerevisiae. Our study provides a combined way to improve the efficiency of heterologous biosynthesis of UA and offers new ideas and methods for the efficient synthesis of other triterpenoids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aimee完成签到 ,获得积分10
1秒前
阔达以山完成签到,获得积分10
1秒前
无心的星月应助mmol采纳,获得10
1秒前
彩色愚志发布了新的文献求助10
2秒前
baihanjunluo应助儒雅曼云采纳,获得10
2秒前
2秒前
英俊的铭应助ling22采纳,获得10
3秒前
3秒前
5秒前
强健的千萍完成签到 ,获得积分20
6秒前
B站萧亚轩发布了新的文献求助10
6秒前
wen完成签到,获得积分10
7秒前
7秒前
123完成签到,获得积分10
7秒前
我是老大应助Blank采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
汉堡包应助t忒对采纳,获得30
11秒前
乐乐应助方班术采纳,获得10
11秒前
想养一只猫完成签到,获得积分10
13秒前
13秒前
13秒前
小熊猪应助高兴的沛山采纳,获得60
14秒前
点点丶逗逗发布了新的文献求助100
14秒前
14秒前
15秒前
高贵的斑马完成签到,获得积分20
15秒前
15秒前
15秒前
Hou完成签到 ,获得积分10
15秒前
英姑应助英俊的老太采纳,获得10
16秒前
ch发布了新的文献求助10
16秒前
谷粱紫槐发布了新的文献求助10
17秒前
18秒前
19秒前
手可摘星陈同学完成签到 ,获得积分10
19秒前
19秒前
guobiao发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882