神经炎症
血脑屏障
药理学
左氧氟沙星
缺血
医学
化学
中枢神经系统
内科学
炎症
生物化学
抗生素
作者
Shilun Yang,Dingkang Xu,Dianhui Zhang,Xiaowen Huang,Simeng Li,Yan Wang,Jing Lu,Daming Wang,Zhen‐Ni Guo,Yi Yang,Dewei Ye,Yu Wang,Aimin Xu,Ruby L.C. Hoo,Junlei Chang
标识
DOI:10.1016/j.ejphar.2023.176275
摘要
Reperfusion therapy is currently the most effective treatment for acute ischemic stroke, but often results in secondary brain injury. Adipocyte fatty acid-binding protein (A-FABP, FABP4, or aP2) was shown to critically mediate cerebral ischemia/reperfusion (I/R) injury by exacerbating blood-brain barrier (BBB) disruption. However, no A-FABP inhibitors have been approved for clinical use due to safety issues. Here, we identified the therapeutic effect of levofloxacin, a widely used antibiotic displaying A-FABP inhibitory activity in vitro, on cerebral I/R injury and determined its target specificity and action mechanism in vivo. Using molecular docking and site-directed mutagenesis, we showed that levofloxacin inhibited A-FABP activity through interacting with the amino acid residue Asp76, Gln95, Arg126 of A-FABP. Accordingly, levofloxacin significantly inhibited A-FABP-induced JNK phosphorylation and expressions of proinflammatory factors and matrix metalloproteinase 9 (MMP-9) in mouse primary macrophages. In wild-type mice with transient middle cerebral artery occlusion, levofloxacin substantially mitigated BBB disruption and neuroinflammation, leading to reduced cerebral infarction, alleviated neurological outcomes, and improved survival. Mechanistically, levofloxacin decreased MMP-9 expression and activity, and thus reduced degradation of extracellular matrix and endothelial tight junction proteins. Importantly, the BBB- and neuro-protective effects of levofloxacin were abolished in A-FABP or MMP-9 knockout mice, suggesting that the therapeutic effects of levofloxacin highly depended on specific targeting of the A-FABP-MMP-9 axis. Overall, our study demonstrates that levofloxacin alleviates A-FABP-induced BBB disruption and neural tissue injury following cerebral I/R, and unveils its therapeutic potential for the treatment of ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI