Integrated analysis of a competing endogenous RNA network reveals a ferroptosis-related 6-lncRNA prognostic signature in clear cell renal cell carcinoma

竞争性内源性RNA 小RNA 计算生物学 生物 比例危险模型 PVT1型 长非编码RNA 生存分析 基因 生物信息学 核糖核酸 遗传学 医学 内科学
作者
Qing Zheng,Zhenqi Gong,Shaoxiong Lin,Dehua Ou,Weilong Lin,Peilin Shen
出处
期刊:Advances in Clinical and Experimental Medicine [Wroclaw Medical University]
卷期号:33 (12)
标识
DOI:10.17219/acem/176050
摘要

Background.Establishing a robust signature for prognostic prediction and precision treatment is necessary due to the heterogeneous prognosis and treatment response of clear cell renal cell carcinoma (ccRCC).Objectives.This study set out to elucidate the biological functions and prognostic role of ferroptosis-related long non-coding RNAs (lncRNAs) based on a synthetic analysis of competing endogenous RNA networks in ccRCC. Materials and methods.Ferroptosis-related genes were obtained from the FerrDb database.The expression data and matched clinical information of lncRNAs, miRNAs and mRNAs from The Cancer Genome Atlas (TCGA) database were obtained to identify differentially expressed RNAs.The lncRNA-miRNA-mRNA ceRNA network was established utilizing the common miRNAs that were predicted in the RNAHybrid, StarBase and TargetScan databases.Then, using progressive univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis of gene expression data and clinical information, a ferroptosis-related lncRNA prognosis signature was constructed based on the lncRNAs in ceRNA.Finally, the influence of independent lncRNAs on ccRCC was explored.Results.A total of 35 ferroptosis-related mRNAs, 356 lncRNAs and 132 miRNAs were sorted out after differential expression analysis in the TCGA-KIRC.Subsequently, overlapping lncRNA-miRNA and miRNA-mRNA interactions among the RNAHybrid, StarBase and TargetScan databases were constructed and identified; then a ceRNA network with 77 axes related to ferroptosis was established utilizing mutual miRNAs in 2 interaction networks as nodes.Next, a 6-ferroptosis-lncRNA signature including PVT1, CYTOR, MIAT, SNHG17, LINC00265, and LINC00894 was identified in the training set.Kaplan-Meier analysis, PCA, t-SNE analysis, risk score curve, and receiver operating characteristic (ROC) curve were performed to confirm the validity of the signature in the training set and verified in the validation set.Finally, single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) analysis showed that the signature was related to immune cell infiltration.Conclusions.Our research underlines the role of the 6-ferroptosis-lncRNA signature as a predictor of prognosis and a therapeutic alternative for ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮浮世世发布了新的文献求助10
刚刚
1秒前
田様应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
zcl应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
生动梦松应助科研通管家采纳,获得150
2秒前
Hello应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
wxy发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Dean应助科研通管家采纳,获得150
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
orixero应助科研通管家采纳,获得10
2秒前
zcl应助科研通管家采纳,获得50
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
生动梦松应助科研通管家采纳,获得150
2秒前
有结果应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
欧派果奶发布了新的文献求助10
3秒前
3秒前
小慧儿完成签到 ,获得积分10
4秒前
kirito发布了新的文献求助10
5秒前
5秒前
科研通AI5应助苗英采纳,获得30
7秒前
认真科研完成签到,获得积分10
7秒前
王子娇完成签到 ,获得积分10
8秒前
下小雨完成签到,获得积分10
8秒前
嘟嘟嘟嘟发布了新的文献求助10
8秒前
8秒前
10秒前
TT发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921214
求助须知:如何正确求助?哪些是违规求助? 4192475
关于积分的说明 13021901
捐赠科研通 3963791
什么是DOI,文献DOI怎么找? 2172608
邀请新用户注册赠送积分活动 1190331
关于科研通互助平台的介绍 1099525