Integrated analysis of a competing endogenous RNA network reveals a ferroptosis-related 6-lncRNA prognostic signature in clear cell renal cell carcinoma

竞争性内源性RNA 小RNA 计算生物学 生物 比例危险模型 PVT1型 长非编码RNA 生存分析 基因 生物信息学 核糖核酸 遗传学 医学 内科学
作者
Qing Zheng,Zhenqi Gong,Shaoxiong Lin,Dehua Ou,Weilong Lin,Peilin Shen
出处
期刊:Advances in Clinical and Experimental Medicine [Wroclaw Medical University]
卷期号:33 (12)
标识
DOI:10.17219/acem/176050
摘要

Background.Establishing a robust signature for prognostic prediction and precision treatment is necessary due to the heterogeneous prognosis and treatment response of clear cell renal cell carcinoma (ccRCC).Objectives.This study set out to elucidate the biological functions and prognostic role of ferroptosis-related long non-coding RNAs (lncRNAs) based on a synthetic analysis of competing endogenous RNA networks in ccRCC. Materials and methods.Ferroptosis-related genes were obtained from the FerrDb database.The expression data and matched clinical information of lncRNAs, miRNAs and mRNAs from The Cancer Genome Atlas (TCGA) database were obtained to identify differentially expressed RNAs.The lncRNA-miRNA-mRNA ceRNA network was established utilizing the common miRNAs that were predicted in the RNAHybrid, StarBase and TargetScan databases.Then, using progressive univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis of gene expression data and clinical information, a ferroptosis-related lncRNA prognosis signature was constructed based on the lncRNAs in ceRNA.Finally, the influence of independent lncRNAs on ccRCC was explored.Results.A total of 35 ferroptosis-related mRNAs, 356 lncRNAs and 132 miRNAs were sorted out after differential expression analysis in the TCGA-KIRC.Subsequently, overlapping lncRNA-miRNA and miRNA-mRNA interactions among the RNAHybrid, StarBase and TargetScan databases were constructed and identified; then a ceRNA network with 77 axes related to ferroptosis was established utilizing mutual miRNAs in 2 interaction networks as nodes.Next, a 6-ferroptosis-lncRNA signature including PVT1, CYTOR, MIAT, SNHG17, LINC00265, and LINC00894 was identified in the training set.Kaplan-Meier analysis, PCA, t-SNE analysis, risk score curve, and receiver operating characteristic (ROC) curve were performed to confirm the validity of the signature in the training set and verified in the validation set.Finally, single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) analysis showed that the signature was related to immune cell infiltration.Conclusions.Our research underlines the role of the 6-ferroptosis-lncRNA signature as a predictor of prognosis and a therapeutic alternative for ccRCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽化成仙完成签到 ,获得积分10
刚刚
幽默的迎天完成签到,获得积分10
3秒前
天天快乐应助帆帆帆采纳,获得10
6秒前
sora完成签到,获得积分10
9秒前
乌云乌云快走开完成签到,获得积分10
11秒前
月上柳梢头A1完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
怕触电的电源完成签到 ,获得积分10
12秒前
看文献完成签到,获得积分10
12秒前
12秒前
祁乾完成签到 ,获得积分10
15秒前
闻屿完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
nicky完成签到 ,获得积分10
17秒前
帆帆帆发布了新的文献求助10
17秒前
曙光完成签到 ,获得积分10
18秒前
CooL完成签到 ,获得积分0
19秒前
阴雨完成签到 ,获得积分10
20秒前
偷得浮生半日闲完成签到,获得积分10
21秒前
21秒前
22秒前
彩色从雪完成签到,获得积分10
22秒前
23秒前
Hello应助闫晓美采纳,获得10
24秒前
天天发布了新的文献求助10
25秒前
乐乐完成签到,获得积分10
25秒前
26秒前
27秒前
LXZ完成签到,获得积分10
27秒前
龄仔仔完成签到 ,获得积分10
29秒前
30秒前
33秒前
量子星尘发布了新的文献求助10
36秒前
drslytherin完成签到,获得积分10
36秒前
闫晓美发布了新的文献求助10
37秒前
宰宰小熊发布了新的文献求助10
40秒前
44秒前
量子星尘发布了新的文献求助10
45秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671559
求助须知:如何正确求助?哪些是违规求助? 4919724
关于积分的说明 15134997
捐赠科研通 4830375
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540671
关于科研通互助平台的介绍 1498971