The Use of Machine Learning to Predict Steel Properties – A Review on the Latest Works

人工智能 计算机科学 人工智能应用 机器学习
作者
Adriana da Cunha Rocha,Pedro Enrique Monforte Brandão Marques
出处
期刊:IntechOpen eBooks [IntechOpen]
标识
DOI:10.5772/intechopen.1004639
摘要

Artificial Intelligence [AI] has been of great discussion lately and one can perceive its use in many aspects of modern life. In science, and more specifically in Materials Sciences, AI has been employed for many different applications. Machine Learning (ML) has been historically linked to Artificial Intelligence (AI) for many decades. Some basic concepts of ML can be traced from the 1930s, but it was only during the 1980s and 1990s that ML really started to be used in a stronger and well-organized fashion, due to the development of more efficient algorithms from better and more robust data processing machines. This chapter presents a review on the recent works of distinct research groups that have been using Machine Learning [ML], which is one of many different methods of AI, as a tool for predicting steel properties. A brief definition of ML is given at the beginning of the chapter, followed by some of the most relevant examples of ML use to exemplify the power of this AI method for the development of steel engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesTYD发布了新的文献求助10
3秒前
Mystic完成签到,获得积分10
4秒前
4秒前
小菜完成签到 ,获得积分10
5秒前
Mystic发布了新的文献求助10
6秒前
情怀应助菠萝采纳,获得10
7秒前
8秒前
9秒前
冰糕完成签到,获得积分20
10秒前
搜集达人应助GSD采纳,获得10
13秒前
梅林公发布了新的文献求助10
14秒前
Akim应助王志威采纳,获得10
15秒前
17秒前
动人的向松完成签到 ,获得积分10
19秒前
19秒前
ting完成签到,获得积分10
20秒前
兑润泽完成签到,获得积分10
20秒前
Yan0909完成签到,获得积分10
20秒前
冰巧完成签到,获得积分10
22秒前
瓜地学龙叫完成签到,获得积分20
23秒前
ceeray23应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
25秒前
酷炫甜瓜完成签到,获得积分10
25秒前
苏苏苏发布了新的文献求助10
26秒前
GSD发布了新的文献求助10
26秒前
彭于晏应助迅速向日葵采纳,获得10
27秒前
FT发布了新的文献求助10
29秒前
浮浮发布了新的文献求助10
32秒前
cbf关闭了cbf文献求助
33秒前
如风随水发布了新的文献求助10
33秒前
34秒前
歪西西完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003