Single-Atom Nanozymes: From Precisely Engineering to Extensive Applications

Atom(片上系统) 纳米技术 计算机科学 材料科学 嵌入式系统
作者
Zhanjun Guo,Juanji Hong,Ningning Song,Minmin Liang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (3): 347-357 被引量:53
标识
DOI:10.1021/accountsmr.3c00250
摘要

ConspectusNanozymes are nanomaterials with intrinsic enzyme-like properties that can overcome the current limitations of natural enzymes, such as high preparation cost, instability, restricted application scenarios, etc. Since the Fe3O4 nanoparticles (NPs) were shown to possess the peroxidase (POD)-like activity in 2007, thousands of nanomaterials were reported to mimic the catalytic properties of various types of enzymes including catalase (CAT), haloperoxidase, superoxide dismutase (SOD), glucose oxidase, glutathione peroxidase, hydrolase, nuclease, nitroreductase, and others. Particularly, some nanozymes showed multienzyme-like activities with regarding to the changes in application scenarios such as temperature, pH, etc. Benefiting from their distinct physical-chemical characteristics and enzyme-like catalytic properties, the nanozymes have been widely applied in various biomedical related fields from in vitro detections to in vivo therapeutic treatments. However, currently their ambiguous structure–function correlations and relatively inferior activities compared to natural enzymes promote extensive efforts for the modifications on current nanozymes and development of novel alternative nanozymes. The single-atom nanozymes (SAzymes) present a unique way to mimic the highly evolved enzyme active centers, because of their atomically dispersed catalytic sites, which leads to high atom utilization efficiency and, thus, potentially extraordinary catalytic activity. Also, the abilities to modify the active centers and/or tune the interactions between the metal centers and supporting ligands provide a precise way to engineer the SAzymes at atomic levels. Given their well-defined geometric and electronic structures, the SAzymes thus can serve as exceptional templates for deciphering the structure–function relationships, which is beneficial for further improving their catalytic performances.In this Account, we will review our recent efforts and other notable works on the developments of SAzymes as effective enzyme mimics and their applications in the biomedical related areas. We will begin with a brief introduction for nanozymes and why the emergence of SAzymes, as a novel artificial enzyme, tackles some of the challenges nanozymes are facing. Next, we will focus on the systematic design, synthesis and optimization of SAzymes, especially on the impacts of engineering the metal centers and their ligands environment on their activities from an enzymologist perspective. For example, with alternations of first-shell ligand from N to P/S, the SAzymes' CAT-like activity were increased more than 4-fold. The changes in the coordination numbers (x) for Co–Nx(C) SAzyme significantly altered its oxidase (OXD)-like kinetics and catalytic activity. Then, we will discuss the ways for the standardization of SAzymes' specific activity and enzyme-like kinetics. We will also review the wide ranges of their applications from colorimetric detections of biologicals, antibiosis treatments, to cancer therapies. Finally, we will address the current challenges and future perspectives the SAzymes are facing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OxO完成签到,获得积分10
1秒前
2秒前
小马甲应助iQii采纳,获得30
2秒前
Akim应助Moon采纳,获得10
3秒前
YaHaa发布了新的文献求助10
5秒前
OnMyWorldside给Steve的求助进行了留言
5秒前
量子星尘发布了新的文献求助10
6秒前
cfder完成签到,获得积分10
7秒前
8秒前
8秒前
上官若男应助3089ggf采纳,获得10
8秒前
忧郁小懒猪完成签到 ,获得积分10
8秒前
8秒前
爆米花应助yyww采纳,获得10
9秒前
9秒前
yy完成签到,获得积分10
9秒前
10秒前
史耀宇发布了新的文献求助20
11秒前
ykl完成签到,获得积分10
11秒前
大个应助程希悦采纳,获得10
12秒前
隐形香水发布了新的文献求助10
12秒前
12秒前
surou发布了新的文献求助10
13秒前
yxb完成签到,获得积分10
13秒前
dgg发布了新的文献求助10
13秒前
13秒前
999999完成签到,获得积分20
14秒前
ykmykm发布了新的文献求助10
16秒前
16秒前
wangchong发布了新的文献求助10
18秒前
大马哥完成签到 ,获得积分0
18秒前
18秒前
乐乐应助小周采纳,获得10
19秒前
19秒前
HJ发布了新的文献求助10
19秒前
Waitcy发布了新的文献求助10
20秒前
21秒前
王晓宇发布了新的文献求助10
21秒前
YNHN发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961708
求助须知:如何正确求助?哪些是违规求助? 4221986
关于积分的说明 13149254
捐赠科研通 4006068
什么是DOI,文献DOI怎么找? 2192693
邀请新用户注册赠送积分活动 1206537
关于科研通互助平台的介绍 1118344