Single-Atom Nanozymes: From Precisely Engineering to Extensive Applications

Atom(片上系统) 纳米技术 计算机科学 材料科学 嵌入式系统
作者
Zhanjun Guo,Juanji Hong,Ningning Song,Minmin Liang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (3): 347-357 被引量:44
标识
DOI:10.1021/accountsmr.3c00250
摘要

ConspectusNanozymes are nanomaterials with intrinsic enzyme-like properties that can overcome the current limitations of natural enzymes, such as high preparation cost, instability, restricted application scenarios, etc. Since the Fe3O4 nanoparticles (NPs) were shown to possess the peroxidase (POD)-like activity in 2007, thousands of nanomaterials were reported to mimic the catalytic properties of various types of enzymes including catalase (CAT), haloperoxidase, superoxide dismutase (SOD), glucose oxidase, glutathione peroxidase, hydrolase, nuclease, nitroreductase, and others. Particularly, some nanozymes showed multienzyme-like activities with regarding to the changes in application scenarios such as temperature, pH, etc. Benefiting from their distinct physical-chemical characteristics and enzyme-like catalytic properties, the nanozymes have been widely applied in various biomedical related fields from in vitro detections to in vivo therapeutic treatments. However, currently their ambiguous structure–function correlations and relatively inferior activities compared to natural enzymes promote extensive efforts for the modifications on current nanozymes and development of novel alternative nanozymes. The single-atom nanozymes (SAzymes) present a unique way to mimic the highly evolved enzyme active centers, because of their atomically dispersed catalytic sites, which leads to high atom utilization efficiency and, thus, potentially extraordinary catalytic activity. Also, the abilities to modify the active centers and/or tune the interactions between the metal centers and supporting ligands provide a precise way to engineer the SAzymes at atomic levels. Given their well-defined geometric and electronic structures, the SAzymes thus can serve as exceptional templates for deciphering the structure–function relationships, which is beneficial for further improving their catalytic performances.In this Account, we will review our recent efforts and other notable works on the developments of SAzymes as effective enzyme mimics and their applications in the biomedical related areas. We will begin with a brief introduction for nanozymes and why the emergence of SAzymes, as a novel artificial enzyme, tackles some of the challenges nanozymes are facing. Next, we will focus on the systematic design, synthesis and optimization of SAzymes, especially on the impacts of engineering the metal centers and their ligands environment on their activities from an enzymologist perspective. For example, with alternations of first-shell ligand from N to P/S, the SAzymes' CAT-like activity were increased more than 4-fold. The changes in the coordination numbers (x) for Co–Nx(C) SAzyme significantly altered its oxidase (OXD)-like kinetics and catalytic activity. Then, we will discuss the ways for the standardization of SAzymes' specific activity and enzyme-like kinetics. We will also review the wide ranges of their applications from colorimetric detections of biologicals, antibiosis treatments, to cancer therapies. Finally, we will address the current challenges and future perspectives the SAzymes are facing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinyue完成签到,获得积分10
2秒前
June-ho完成签到,获得积分10
2秒前
3秒前
靓丽雅彤发布了新的文献求助10
3秒前
汝坤完成签到 ,获得积分10
4秒前
安详初蓝完成签到 ,获得积分10
4秒前
5秒前
EvaHo发布了新的文献求助10
6秒前
明理从露完成签到 ,获得积分10
6秒前
橙啊晨发布了新的文献求助10
8秒前
听话的醉冬完成签到 ,获得积分10
8秒前
昏睡的蟠桃应助许许采纳,获得150
9秒前
自行设置完成签到,获得积分10
10秒前
SciGPT应助月林旭采纳,获得10
10秒前
科研通AI2S应助黎昕采纳,获得10
11秒前
thronn完成签到,获得积分10
11秒前
11秒前
Rondab应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
棋士应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
13秒前
13秒前
今后应助科研通管家采纳,获得10
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
ding应助自行设置采纳,获得10
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432