Explainable AI and Law: An Evidential Survey

透明度(行为) 问责 计算机科学 推论 分类学(生物学) 管理科学 人工智能 知识管理 数据科学 政治学 法学 工程类 植物 计算机安全 生物
作者
Karen McGregor Richmond,Satya M. Muddamsetty,Thomas Gammeltoft-­Hansen,Henrik Palmer Olsen,Thomas B. Moeslund
标识
DOI:10.1007/s44206-023-00081-z
摘要

Abstract Decisions made by legal adjudicators and administrative decision-makers often found upon a reservoir of stored experiences, from which is drawn a tacit body of expert knowledge. Such expertise may be implicit and opaque, even to the decision-makers themselves, and generates obstacles when implementing AI for automated decision-making tasks within the legal field, since, to the extent that AI-powered decision-making tools must found upon a stock of domain expertise, opacities may proliferate. This raises particular issues within the legal domain, which requires a high level of accountability, thus transparency. This requires enhanced explainability, which entails that a heterogeneous body of stakeholders understand the mechanism underlying the algorithm to the extent that an explanation can be furnished. However, the “black-box” nature of some AI variants, such as deep learning, remains unresolved, and many machine decisions therefore remain poorly understood. This survey paper, based upon a unique interdisciplinary collaboration between legal and AI experts, provides a review of the explainability spectrum, as informed by a systematic survey of relevant research papers, and categorises the results. The article establishes a novel taxonomy, linking the differing forms of legal inference at play within particular legal sub-domains to specific forms of algorithmic decision-making. The diverse categories demonstrate different dimensions in explainable AI (XAI) research. Thus, the survey departs from the preceding monolithic approach to legal reasoning and decision-making by incorporating heterogeneity in legal logics: a feature which requires elaboration, and should be accounted for when designing AI-driven decision-making systems for the legal field. It is thereby hoped that administrative decision-makers, court adjudicators, researchers, and practitioners can gain unique insights into explainability, and utilise the survey as the basis for further research within the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一口一个粽子完成签到 ,获得积分10
刚刚
wyx完成签到 ,获得积分10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
GEOPYJ应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
tianzml0应助科研通管家采纳,获得30
1秒前
Nitric_Oxide应助科研通管家采纳,获得80
1秒前
子车茗应助科研通管家采纳,获得10
1秒前
tianzml0应助科研通管家采纳,获得10
1秒前
tianzml0应助科研通管家采纳,获得10
1秒前
GEOPYJ应助科研通管家采纳,获得10
1秒前
Ava应助壮观溪流采纳,获得10
1秒前
1秒前
1秒前
越红发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助行止采纳,获得10
4秒前
morii发布了新的文献求助10
5秒前
6秒前
落寞的绾绾给落寞的绾绾的求助进行了留言
6秒前
nyc完成签到,获得积分10
7秒前
7秒前
8秒前
情怀应助李喜喜采纳,获得10
9秒前
9秒前
10秒前
10秒前
香蕉觅云应助儒雅的傲芙采纳,获得10
11秒前
13秒前
13秒前
彩色橘子完成签到 ,获得积分10
14秒前
14秒前
鱼鱼子999发布了新的文献求助10
14秒前
壮观溪流发布了新的文献求助10
16秒前
morii完成签到,获得积分10
17秒前
FashionBoy应助haowu采纳,获得10
18秒前
oceanao应助haowu采纳,获得10
18秒前
慕青应助haowu采纳,获得10
18秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228