YOLO-SM: A Lightweight Single-Class Multi-Deformation Object Detection Network

班级(哲学) 计算机科学 变形(气象学) 人工智能 对象(语法) 计算机视觉 地理 气象学
作者
Xuebin Yue,Lin Meng
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2467-2480 被引量:4
标识
DOI:10.1109/tetci.2024.3367821
摘要

Recently, object detection witnessed vast progress with the rapid development of Convolutional Neural Networks (CNNs). However, object detection is mainly for multi-class tasks, and few networks are used to detect single-class multi-deformation objects. This paper aims to develop a lightweight object detection network for single-class multi-deformation objects to promote the practical application of object detection networks. First, we design a Densely Connected Multi-scale (DCM) module to augment the semantic information extraction of deformation objects. With the DCM module and other strategies incorporated, we design a lightweight backbone structure for object detection, namely, DCMNet. Then, we construct a lightweight Neck structure Ghost Multi-scale Feature (GMF) module for feature fusion using a feature linear generation strategy. Finally, with the DCMNet and GMF module, we propose the object detection network YOLO-SM for single-class multi-deformation objects. Extensive experiments demonstrate that our proposed backbone structure, DCMNet, significantly outperforms the state-of-the-art models. YOLO-SM achieves 97.66% mean Average Precision ( $mAP$ ) on the Barcode public dataset, which is higher than other state-of-the-art object detection models, and achieves an inference time of 55.45 frames per second (FPS), proving that the YOLO-SM has a good performance tradeoff between speed and accuracy in detecting single-class multi-deformation objects. Furthermore, in the single-class multi-deformation Crack public dataset, the $mAP$ of 86.11% is achieved, and an $mAP$ of 99.84% is obtained in the multi-class dataset Dish20, which is much higher than other state-of-the-art object detection models, proving that the YOLO-SM has good generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的依丝完成签到,获得积分10
刚刚
飞天三叉戟应助原子采纳,获得30
刚刚
1秒前
2秒前
yelis完成签到,获得积分10
2秒前
科研通AI5应助周少采纳,获得10
2秒前
华仔应助ZH的天方夜谭采纳,获得10
2秒前
2秒前
grzzz发布了新的文献求助10
3秒前
3秒前
Yun yun发布了新的文献求助10
3秒前
3秒前
qingqing完成签到,获得积分10
3秒前
4秒前
4秒前
甜蜜秋蝶完成签到,获得积分10
4秒前
orixero应助沉静念真采纳,获得10
4秒前
闪闪落雁发布了新的文献求助10
4秒前
6秒前
7秒前
Bellala发布了新的文献求助10
7秒前
打打应助魔幻的盼芙采纳,获得10
7秒前
7秒前
小肉球完成签到 ,获得积分10
7秒前
CipherSage应助小~杰采纳,获得10
7秒前
星辰大海应助heihei采纳,获得10
8秒前
TT发布了新的文献求助10
8秒前
556644O发布了新的文献求助10
8秒前
yyi1完成签到,获得积分10
9秒前
9秒前
科研通AI5应助Keven采纳,获得10
10秒前
DDD发布了新的文献求助10
10秒前
书虫发布了新的文献求助10
10秒前
Viv完成签到,获得积分10
10秒前
结实的蘑菇完成签到 ,获得积分10
11秒前
AllOfMe完成签到 ,获得积分10
12秒前
充电宝应助晓晓采纳,获得10
12秒前
catcher456完成签到,获得积分10
12秒前
正道魁首发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312