Dynamically updated digital twin for prognostics and health management: Application in permanent magnet synchronous motor

预言 计算机科学 领域(数学) 控制工程 光学(聚焦) 状态监测 工程类 数据挖掘 数学 电气工程 纯数学 物理 光学
作者
Haoyu GUO,Shaoping Wang,Jian Shi,Tianshu Ma,Giorgio Guglieri,Ruodi Jia,Fausto Francesco Lizzio
出处
期刊:Chinese Journal of Aeronautics [Elsevier]
被引量:1
标识
DOI:10.1016/j.cja.2023.12.031
摘要

Current research on Digital Twin (DT) based Prognostics and Health Management (PHM) focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management. However, there still exist gaps in the seamless integration of DT and PHM, as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism. When the product experiences long-period degradation under load spectrum, it is challenging to describe the dynamic evolution of the health status and degradation progression accurately. In addition, DT update algorithms are difficult to be integrated simultaneously by current methods. This paper proposes an innovative dual loop DT based PHM framework, in which the first loop establishes the basic dynamic DT with multi-filed coupling, and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism. The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating. Furthermore, the Independence Principle for the abnormal detection is proposed to refine the theory of DT. Events at the first loop focus on accurate modeling of multi-field coupling, while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend. The interaction and collaboration between different loop models are also discussed. Finally, the Permanent Magnet Synchronous Motor (PMSM) is used to verify the proposed method. The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jaden完成签到,获得积分10
刚刚
2秒前
调皮帆布鞋完成签到,获得积分10
4秒前
三寸光阴一个鑫应助Bazinga采纳,获得10
5秒前
清水发布了新的文献求助10
5秒前
6秒前
轻舟未过万重山完成签到,获得积分10
10秒前
10秒前
岑笨笨完成签到,获得积分20
11秒前
11秒前
11秒前
怡然发布了新的文献求助10
12秒前
佟谷兰发布了新的文献求助10
13秒前
隐形曼青应助现实的鹏飞采纳,获得10
15秒前
李健的小迷弟应助kdjm688采纳,获得10
16秒前
尊敬熊发布了新的文献求助20
17秒前
zrkkk完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
醉清风完成签到 ,获得积分10
19秒前
小屁孩完成签到,获得积分10
20秒前
20秒前
小蜜蜂发布了新的文献求助10
20秒前
赘婿应助kdjm688采纳,获得30
22秒前
陈补天完成签到 ,获得积分10
23秒前
和谐以冬完成签到 ,获得积分10
23秒前
桐桐应助彩色的夏青采纳,获得10
26秒前
xiaoyinni发布了新的文献求助100
27秒前
28秒前
蛋堡完成签到 ,获得积分10
29秒前
Orange应助岑笨笨采纳,获得10
31秒前
小蜜蜂完成签到,获得积分10
31秒前
13完成签到 ,获得积分10
32秒前
舒服的醉卉完成签到 ,获得积分10
33秒前
彩色的夏青完成签到,获得积分20
33秒前
33秒前
33秒前
一头猪完成签到,获得积分10
34秒前
传奇3应助ANY采纳,获得10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679710
求助须知:如何正确求助?哪些是违规求助? 4993216
关于积分的说明 15170566
捐赠科研通 4839549
什么是DOI,文献DOI怎么找? 2593456
邀请新用户注册赠送积分活动 1546531
关于科研通互助平台的介绍 1504659