Dynamically updated digital twin for prognostics and health management: Application in permanent magnet synchronous motor

预言 计算机科学 领域(数学) 控制工程 光学(聚焦) 状态监测 工程类 数据挖掘 数学 电气工程 纯数学 物理 光学
作者
Haoyu GUO,Shaoping Wang,Jian Shi,Tianshu Ma,Giorgio Guglieri,Ruodi Jia,Fausto Francesco Lizzio
出处
期刊:Chinese Journal of Aeronautics [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.cja.2023.12.031
摘要

Current research on Digital Twin (DT) based Prognostics and Health Management (PHM) focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management. However, there still exist gaps in the seamless integration of DT and PHM, as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism. When the product experiences long-period degradation under load spectrum, it is challenging to describe the dynamic evolution of the health status and degradation progression accurately. In addition, DT update algorithms are difficult to be integrated simultaneously by current methods. This paper proposes an innovative dual loop DT based PHM framework, in which the first loop establishes the basic dynamic DT with multi-filed coupling, and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism. The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating. Furthermore, the Independence Principle for the abnormal detection is proposed to refine the theory of DT. Events at the first loop focus on accurate modeling of multi-field coupling, while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend. The interaction and collaboration between different loop models are also discussed. Finally, the Permanent Magnet Synchronous Motor (PMSM) is used to verify the proposed method. The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z赵完成签到 ,获得积分10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
1秒前
青柠完成签到,获得积分10
1秒前
离岸完成签到,获得积分10
1秒前
1秒前
科研通AI5应助马前人采纳,获得10
1秒前
张11发布了新的文献求助10
2秒前
好名字完成签到,获得积分10
4秒前
bing完成签到,获得积分10
5秒前
是我呀吼发布了新的文献求助10
6秒前
7秒前
7秒前
书生完成签到,获得积分10
8秒前
电子屎壳郎完成签到,获得积分10
8秒前
guoxingliu完成签到,获得积分10
8秒前
1699Z完成签到 ,获得积分10
9秒前
dingdingding发布了新的文献求助10
10秒前
suna完成签到 ,获得积分10
10秒前
11秒前
秋殤完成签到 ,获得积分10
11秒前
hahahahaha完成签到,获得积分10
11秒前
kwx应助绮山采纳,获得10
13秒前
btcat完成签到,获得积分0
13秒前
菠萝吹雪完成签到,获得积分10
13秒前
专玩对抗路完成签到,获得积分10
13秒前
ccc完成签到 ,获得积分10
14秒前
wang发布了新的文献求助10
15秒前
嗯啊完成签到,获得积分10
15秒前
felix发布了新的文献求助10
15秒前
三石完成签到 ,获得积分10
16秒前
能干戎完成签到,获得积分10
16秒前
材1完成签到 ,获得积分10
16秒前
efengmo完成签到,获得积分10
19秒前
马前人发布了新的文献求助10
19秒前
LY0430完成签到 ,获得积分10
19秒前
白笑石完成签到,获得积分10
20秒前
思源应助帆帆帆采纳,获得10
20秒前
aaa完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798