Dynamically updated digital twin for prognostics and health management: Application in permanent magnet synchronous motor

预言 计算机科学 领域(数学) 控制工程 光学(聚焦) 状态监测 工程类 数据挖掘 数学 电气工程 纯数学 物理 光学
作者
Haoyu GUO,Shaoping Wang,Jian Shi,Tianshu Ma,Giorgio Guglieri,Ruodi Jia,Fausto Francesco Lizzio
出处
期刊:Chinese Journal of Aeronautics [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.cja.2023.12.031
摘要

Current research on Digital Twin (DT) based Prognostics and Health Management (PHM) focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management. However, there still exist gaps in the seamless integration of DT and PHM, as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism. When the product experiences long-period degradation under load spectrum, it is challenging to describe the dynamic evolution of the health status and degradation progression accurately. In addition, DT update algorithms are difficult to be integrated simultaneously by current methods. This paper proposes an innovative dual loop DT based PHM framework, in which the first loop establishes the basic dynamic DT with multi-filed coupling, and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism. The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating. Furthermore, the Independence Principle for the abnormal detection is proposed to refine the theory of DT. Events at the first loop focus on accurate modeling of multi-field coupling, while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend. The interaction and collaboration between different loop models are also discussed. Finally, the Permanent Magnet Synchronous Motor (PMSM) is used to verify the proposed method. The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小程同学发布了新的文献求助10
刚刚
ycg发布了新的文献求助20
1秒前
州府十三完成签到,获得积分20
1秒前
Diss完成签到,获得积分10
1秒前
Orange应助科研通管家采纳,获得30
2秒前
3秒前
云舒应助科研通管家采纳,获得30
3秒前
Orange应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
yar应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
musejie应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Rylee完成签到,获得积分10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
凡迪亚比应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
酷炫翠桃应助qaa2274278941采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
QUA应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
小梦完成签到,获得积分10
5秒前
愉快敏发布了新的文献求助10
5秒前
花老美完成签到,获得积分10
5秒前
英俊的铭应助Diss采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582