Dynamically updated digital twin for prognostics and health management: Application in permanent magnet synchronous motor

预言 计算机科学 领域(数学) 控制工程 光学(聚焦) 状态监测 工程类 数据挖掘 数学 电气工程 纯数学 物理 光学
作者
Haoyu GUO,Shaoping Wang,Jian Shi,Tianshu Ma,Giorgio Guglieri,Ruodi Jia,Fausto Francesco Lizzio
出处
期刊:Chinese Journal of Aeronautics [Elsevier]
被引量:1
标识
DOI:10.1016/j.cja.2023.12.031
摘要

Current research on Digital Twin (DT) based Prognostics and Health Management (PHM) focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management. However, there still exist gaps in the seamless integration of DT and PHM, as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism. When the product experiences long-period degradation under load spectrum, it is challenging to describe the dynamic evolution of the health status and degradation progression accurately. In addition, DT update algorithms are difficult to be integrated simultaneously by current methods. This paper proposes an innovative dual loop DT based PHM framework, in which the first loop establishes the basic dynamic DT with multi-filed coupling, and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism. The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating. Furthermore, the Independence Principle for the abnormal detection is proposed to refine the theory of DT. Events at the first loop focus on accurate modeling of multi-field coupling, while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend. The interaction and collaboration between different loop models are also discussed. Finally, the Permanent Magnet Synchronous Motor (PMSM) is used to verify the proposed method. The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
1秒前
1秒前
qq发布了新的文献求助10
1秒前
2秒前
we发布了新的文献求助10
2秒前
w289244617完成签到,获得积分10
3秒前
铃铛发布了新的文献求助10
3秒前
5秒前
明理战斗机完成签到,获得积分10
5秒前
聪明的采枫完成签到,获得积分10
6秒前
大模型应助y12采纳,获得10
7秒前
xzy998应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
mirror应助科研通管家采纳,获得10
8秒前
yyzhou应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
xzy998应助科研通管家采纳,获得10
8秒前
gyf应助科研通管家采纳,获得10
8秒前
叫我Le哥完成签到,获得积分10
8秒前
mirror应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
gyf应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
佰斯特威应助科研通管家采纳,获得10
9秒前
gyf应助科研通管家采纳,获得10
9秒前
mirror应助科研通管家采纳,获得10
9秒前
gyf应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
ccm应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
11秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501080
求助须知:如何正确求助?哪些是违规求助? 4597484
关于积分的说明 14459145
捐赠科研通 4530861
什么是DOI,文献DOI怎么找? 2482982
邀请新用户注册赠送积分活动 1466639
关于科研通互助平台的介绍 1439310