Identification of reservoir types in deep carbonates based on mixed-kernel machine learning using geophysical logging data

支持向量机 核(代数) 人工智能 油藏计算 计算机科学 机器学习 测井 线性判别分析 绘图(图形) 鉴定(生物学) 模式识别(心理学) 数据挖掘 人工神经网络 工程类 数学 石油工程 统计 循环神经网络 组合数学 生物 植物
作者
Jinxiong Shi,Xiangyuan Zhao,Lianbo Zeng,Yun-Zhao Zhang,Zhengping Zhu,Shaoqun Dong
出处
期刊:Petroleum Science [Elsevier BV]
卷期号:21 (3): 1632-1648 被引量:4
标识
DOI:10.1016/j.petsci.2023.12.016
摘要

Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces. Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency, which cannot accurately reflect the nonlinear relationship between reservoir types and logging data. Recently, the kernel Fisher discriminant analysis (KFD), a kernel-based machine learning technique, attracts attention in many fields because of its strong nonlinear processing ability. However, the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well, especially for highly complex data cases. To address this issue, in this study, a mixed kernel Fisher discriminant analysis (MKFD) model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin, China. The MKFD model was trained and tested with 453 datasets from 7 coring wells, utilizing GR, CAL, DEN, AC, CNL and RT logs as input variables. The particle swarm optimization (PSO) was adopted for hyper-parameter optimization of MKFD model. To evaluate the model performance, prediction results of MKFD were compared with those of basic-kernel based KFD, RF and SVM models. Subsequently, the built MKFD model was applied in a blind well test, and a variable importance analysis was conducted. The comparison and blind test results demonstrated that MKFD outperformed traditional KFD, RF and SVM in the identification of reservoir types, which provided higher accuracy and stronger generalization. The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮丹妗完成签到 ,获得积分10
2秒前
flyfish完成签到,获得积分10
2秒前
2秒前
李嘉乐发布了新的文献求助10
3秒前
果实发布了新的文献求助10
5秒前
情怀应助GSQ采纳,获得10
5秒前
8秒前
酷酷茹嫣发布了新的文献求助10
8秒前
kjdgahdg完成签到,获得积分10
9秒前
10秒前
10秒前
Eraser完成签到,获得积分10
10秒前
英俊的铭应助果实采纳,获得10
11秒前
zhangst发布了新的文献求助10
15秒前
16秒前
16秒前
ding应助科研通管家采纳,获得10
16秒前
积极的以山关注了科研通微信公众号
16秒前
ding应助科研通管家采纳,获得10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
17秒前
小黄鱼儿应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
Starwalker应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得30
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
18秒前
20秒前
Aria完成签到,获得积分10
22秒前
徐徐发布了新的文献求助10
23秒前
23秒前
完美世界应助zhangst采纳,获得10
24秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611