降级(电信)
聚氨酯
硒
聚合物
材料科学
废物管理
环境污染
塑料污染
化学
环境科学
复合材料
环境化学
冶金
计算机科学
工程类
电信
环境保护
微塑料
作者
Chaowei He,Cheng Liu,Shuojiong Pan,Yizheng Tan,Jun Guan,Huaping Xu
标识
DOI:10.1002/anie.202317558
摘要
Abstract Degradable polymers offer a promising solution to mitigate global plastic pollution, but the degraded products often suffer from diminished value. Upcycling is a more sustainable approach to upgrade polymer waste into value‐added products. Herein, we report a β‐selenocarbonyl‐containing polyurethane (SePU), which can be directly degraded under mild conditions into valuable selenium fertilizers for selenium‐rich vegetable cultivation globally, enabling both plastic degradation and waste upcycling. Under oxidation condition, this polymer can be easily and selectively degraded via selenoxide elimination reaction from mixed plastic waste. The degraded product can serve as effective selenium fertilizers to increase selenium content in radish and pak choi. The SePU exhibits excellent mechanical properties. Additionally, we observed the formation of spherulites‐like selenium particles within the materials during degradation for the first time. Our research offers a successful application of selenoxide elimination reaction in the field of plastic degradation for the first time, endowing plastics with both degradability and high reusable value. This strategy provides a promising solution to reduce pollution and improve economy and sustainability of plastics.
科研通智能强力驱动
Strongly Powered by AbleSci AI