MHCFormer: Multiscale Hierarchical Conv-Aided Fourierformer for Hyperspectral Image Classification

安全性令牌 计算机科学 高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 变压器 上下文图像分类 特征提取 深度学习 图像(数学) 工程类 计算机安全 电压 电气工程
作者
Hao Shi,Youqiang Zhang,Guo Cao,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:3
标识
DOI:10.1109/tim.2023.3344142
摘要

Convolutional neural networks (CNNs) have dominated the hyperspectral image (HSI) classification due to their tremendous feature learning capability. However, the formidable local sensitivity is both a strength and a weakness. Recently, the vision transformers have exhibited impressive performances on various vision problems. Compared with CNNs, they can model long-range dependencies to learn more abundant interactions between spatial locations. Nevertheless, the existing transformer-based HSI classification methods also concentrate too much on the advantages of the transformer architecture and disregard the importance of local dependencies. In addition, token generation and token mixers in transformer-like architectures have not been adequately explored, leading to difficulties in obtaining the best classification performance. To deal with these problems, a novel multiscale hierarchical conv-aided Fourierformer (MHCFormer) is proposed for HSI classification. To the best of our knowledge, this is the first time that CNN, transformer, and Fourier transform are skillfully combined for hyperspectral image classification. The proposed MHCFormer involves three stages, i.e., multiscale spectral-spatial token generation, hierarchical token learning and a classification head. The multiscale spectral-spatial token generation is constructed to transform HSI into tokens with multiscale enhanced spectral-spatial information. The hierarchical token learning is designed to explore multiscale tokens globally and locally by integrating the design philosophy of transformers and CNNs along with Fourier transforms into a block and stacking the blocks hierarchically. Extensive experimental results on the new WHU-Hi-HanChuan dataset and the widely used Indian Pines and Houston 2013 datasets have demonstrated the superiority of MHCFormer over other state-of-the-art methods. The code of our work will be available publicly at https://github.com/Tikiten/MHCFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaohar发布了新的文献求助10
刚刚
1秒前
超帅路灯应助sjc采纳,获得10
2秒前
Hello应助yv采纳,获得10
2秒前
通关发布了新的文献求助10
3秒前
4秒前
4秒前
Souliko发布了新的文献求助10
4秒前
费老三发布了新的文献求助10
5秒前
5秒前
是小明啦发布了新的文献求助10
5秒前
Linda完成签到,获得积分10
6秒前
星空发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
11完成签到,获得积分20
8秒前
9秒前
oioioioioi关注了科研通微信公众号
9秒前
失眠绝音完成签到,获得积分10
10秒前
10秒前
10秒前
赫赫完成签到,获得积分10
11秒前
11秒前
wm发布了新的文献求助10
11秒前
友好的难敌完成签到,获得积分10
11秒前
zz发布了新的文献求助10
12秒前
爱静静应助哈哈采纳,获得10
13秒前
13秒前
是小明啦完成签到,获得积分10
13秒前
14秒前
psycho完成签到,获得积分10
14秒前
橙子发布了新的文献求助10
14秒前
11完成签到,获得积分10
14秒前
starofjlu应助尺八采纳,获得10
14秒前
君子兰应助否认冶游史采纳,获得100
14秒前
柠檬完成签到,获得积分10
14秒前
木子完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788