miRNAs peripheral biomarkers for early diagnosis of AD in Latinamerican population

生物标志物 小RNA 队列 人口 神经心理学 认知 生物信息学 肿瘤科 医学 算法 机器学习 计算生物学 内科学 生物 计算机科学 精神科 遗传学 基因 环境卫生
作者
Paulina Orellana,Ariel Caviedes,Carolina González,Stefanny Salcidua,Fernando Henríquez,Victoria Cabello,Patricia Lillo,Roque Villagra,Mauricio Cerda,Pedro Zitko,Daniela Thumala,Christian Gonzalez,Agustín Ibáñez,Rolando de la Cruz,Andrea Slachevsky,Claudia Duran‐Aniotz
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S15)
标识
DOI:10.1002/alz.076778
摘要

Abstract Background Timely diagnosis of Alzheimer’s disease (AD) is a critical first step in clinical care treatment. However, the availability of diagnostic tools for these conditions is either unavailable or unaffordable, especially in Latin American and the Caribbean (LAC) countries. In this scenario, microRNAs (miRNA) have recently emerged as promising cost‐effective and noninvasive biomarkers since they can be readily detected in different biofluids such as plasma bound to protein or inside exosomes. Our aim is to identify new blood biomarkers to calculate the risk to develop AD in the early stages using machine learning based on exosomal miRNAs detection and different cognitive domains. Method miRNAs were extracted from plasma circulating exosomes samples of Subjective Cognitive Complaint subjects belonging to the GERO cohort in two different times (T1 = baseline and T2 = 18 months, n = 50). miRNAs were sequencing to identify the expression levels. Dysregulated miRNAs were analyzed and correlated with neuropsychological evaluations to create machine learning algorithms. miRNAs obtained from algorithms were validated in a new population of subjects at both stages (T1 and T2, n = 50), using qRT‐PCR and correlation analysis with neuropsychological tests. Result For algorithm development, we classified subjects into stationary and progressive impairment. Algorithms were trained using the sequenced miRNAs, neuropsychological tests and neuroimaging. As possible predictors of progression of cognitive impairment, the best performing algorithm was Random forest using only miRNAs data. In a new group of subjects, three miRNAs selected by the algorithm and four miRNAs obtained from the literature were validated and the ROC curves were constructed. The combination of these miRNAs (algorithm and literature miRNAs), were the best predictor of the progression of cognitive impairment. Conclusion This study could be used in the initial phases of the diagnostic process of AD because it is minimally invasive, low cost and accessible to a large number of patients in Latin American and the Caribbean (LAC) countries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
北世完成签到,获得积分10
1秒前
1秒前
和谐的醉山完成签到,获得积分10
1秒前
Liziqi823完成签到,获得积分10
2秒前
科研小郭完成签到,获得积分10
2秒前
郝老头完成签到,获得积分0
3秒前
3秒前
dominate完成签到,获得积分10
3秒前
fang完成签到 ,获得积分10
3秒前
犹豫傲南完成签到 ,获得积分10
6秒前
Tingshan完成签到,获得积分10
6秒前
666发布了新的文献求助10
7秒前
哎哟很烦完成签到,获得积分10
7秒前
Can发布了新的文献求助10
7秒前
yaocx完成签到,获得积分10
7秒前
hdd发布了新的文献求助30
8秒前
岁月如酒应助ltc采纳,获得10
8秒前
jou完成签到,获得积分10
8秒前
zhuyq完成签到,获得积分10
9秒前
imica完成签到 ,获得积分10
9秒前
10秒前
10秒前
cccy完成签到,获得积分20
11秒前
吕小n发布了新的文献求助10
11秒前
zzzzz完成签到,获得积分10
12秒前
泥巴完成签到,获得积分10
12秒前
13秒前
特斯小子完成签到 ,获得积分10
14秒前
zr完成签到,获得积分10
14秒前
打打应助hdd采纳,获得10
14秒前
米共完成签到 ,获得积分10
15秒前
16秒前
Jack完成签到,获得积分10
17秒前
Woo_SH完成签到 ,获得积分10
17秒前
Amikacin完成签到,获得积分10
18秒前
清爽的孤萍完成签到 ,获得积分10
19秒前
19秒前
xiaoliu完成签到,获得积分10
19秒前
萨格完成签到 ,获得积分10
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443