miRNAs peripheral biomarkers for early diagnosis of AD in Latinamerican population

生物标志物 小RNA 队列 人口 神经心理学 认知 生物信息学 肿瘤科 医学 算法 机器学习 计算生物学 内科学 生物 计算机科学 精神科 遗传学 基因 环境卫生
作者
Paulina Orellana,Ariel Caviedes,Carolina González,Stefanny Salcidua,Fernando Henríquez,Victoria Cabello,Patricia Lillo,Roque Villagra,Mauricio Cerda,Pedro Zitko,Daniela Thumala,Christian Gonzalez,Agustín Ibáñez,Rolando de la Cruz,Andrea Slachevsky,Claudia Duran‐Aniotz
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S15)
标识
DOI:10.1002/alz.076778
摘要

Abstract Background Timely diagnosis of Alzheimer’s disease (AD) is a critical first step in clinical care treatment. However, the availability of diagnostic tools for these conditions is either unavailable or unaffordable, especially in Latin American and the Caribbean (LAC) countries. In this scenario, microRNAs (miRNA) have recently emerged as promising cost‐effective and noninvasive biomarkers since they can be readily detected in different biofluids such as plasma bound to protein or inside exosomes. Our aim is to identify new blood biomarkers to calculate the risk to develop AD in the early stages using machine learning based on exosomal miRNAs detection and different cognitive domains. Method miRNAs were extracted from plasma circulating exosomes samples of Subjective Cognitive Complaint subjects belonging to the GERO cohort in two different times (T1 = baseline and T2 = 18 months, n = 50). miRNAs were sequencing to identify the expression levels. Dysregulated miRNAs were analyzed and correlated with neuropsychological evaluations to create machine learning algorithms. miRNAs obtained from algorithms were validated in a new population of subjects at both stages (T1 and T2, n = 50), using qRT‐PCR and correlation analysis with neuropsychological tests. Result For algorithm development, we classified subjects into stationary and progressive impairment. Algorithms were trained using the sequenced miRNAs, neuropsychological tests and neuroimaging. As possible predictors of progression of cognitive impairment, the best performing algorithm was Random forest using only miRNAs data. In a new group of subjects, three miRNAs selected by the algorithm and four miRNAs obtained from the literature were validated and the ROC curves were constructed. The combination of these miRNAs (algorithm and literature miRNAs), were the best predictor of the progression of cognitive impairment. Conclusion This study could be used in the initial phases of the diagnostic process of AD because it is minimally invasive, low cost and accessible to a large number of patients in Latin American and the Caribbean (LAC) countries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光怀亦完成签到,获得积分10
刚刚
迷路小丸子完成签到,获得积分10
刚刚
peng发布了新的文献求助10
1秒前
小马甲应助YR采纳,获得10
1秒前
z掌握一下发布了新的文献求助10
2秒前
失眠柚子完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
岩下松风完成签到,获得积分10
4秒前
5秒前
时光不旧只是满尘灰完成签到 ,获得积分10
6秒前
Hello应助peng采纳,获得10
7秒前
7秒前
椰丝yes完成签到,获得积分10
7秒前
鱼囧发布了新的文献求助10
7秒前
哆啦十七应助value采纳,获得10
7秒前
8秒前
风181013发布了新的文献求助10
9秒前
热心语山发布了新的文献求助10
12秒前
学术小白发布了新的文献求助30
12秒前
没有答案发布了新的文献求助10
13秒前
14秒前
隐形曼青应助玲也采纳,获得10
14秒前
14秒前
华仔应助kk采纳,获得10
14秒前
14秒前
杨拿铁完成签到,获得积分10
15秒前
李李李关注了科研通微信公众号
18秒前
JamesPei应助CL采纳,获得10
18秒前
jackmilton发布了新的文献求助10
19秒前
20秒前
研友_rLmNXn发布了新的文献求助10
20秒前
20秒前
22秒前
yyy发布了新的文献求助10
22秒前
23秒前
华仔应助研友_rLmNXn采纳,获得10
23秒前
dubo666发布了新的文献求助20
23秒前
英姑应助整齐谷芹采纳,获得80
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342724
求助须知:如何正确求助?哪些是违规求助? 4478521
关于积分的说明 13939809
捐赠科研通 4375215
什么是DOI,文献DOI怎么找? 2404022
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368794