Flexible protein–protein docking with a multitrack iterative transformer

对接(动物) 蛋白质-配体对接 计算机科学 试验装置 大分子对接 人工智能 蛋白质结构 虚拟筛选 变压器 变构调节 机器学习 化学 药物发现 工程类 生物化学 电压 医学 护理部 电气工程
作者
Lee‐Shin Chu,Jeffrey A. Ruffolo,Ameya Harmalkar,Jeffrey J. Gray
出处
期刊:Protein Science [Wiley]
卷期号:33 (2) 被引量:9
标识
DOI:10.1002/pro.4862
摘要

Abstract Conventional protein–protein docking algorithms usually rely on heavy candidate sampling and reranking, but these steps are time‐consuming and hinder applications that require high‐throughput complex structure prediction, for example, structure‐based virtual screening. Existing deep learning methods for protein–protein docking, despite being much faster, suffer from low docking success rates. In addition, they simplify the problem to assume no conformational changes within any protein upon binding (rigid docking). This assumption precludes applications when binding‐induced conformational changes play a role, such as allosteric inhibition or docking from uncertain unbound model structures. To address these limitations, we present GeoDock, a multitrack iterative transformer network to predict a docked structure from separate docking partners. Unlike deep learning models for protein structure prediction that input multiple sequence alignments, GeoDock inputs just the sequences and structures of the docking partners, which suits the tasks when the individual structures are given. GeoDock is flexible at the protein residue level, allowing the prediction of conformational changes upon binding. On the Database of Interacting Protein Structures (DIPS) test set, GeoDock achieves a 43% top‐1 success rate, outperforming all other tested methods. However, in the standard DIPS train/test splits, we discovered contamination of close homologs in the training set. After decontaminating the training set, the success rate is 31%. On the DB5.5 test set and a benchmark dataset of antibody–antigen complexes, GeoDock outperforms the deep learning models trained using the same dataset but falls behind most of the conventional methods and AlphaFold‐Multimer. GeoDock attains an average inference speed of under 1 s on a single GPU, enabling its application in large‐scale structure screening. Although binding‐induced conformational changes are still a challenge owing to limited training and evaluation data, our architecture sets up the foundation to capture this backbone flexibility. Code and a demonstration Jupyter notebook are available at https://github.com/Graylab/GeoDock .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LWJ发布了新的文献求助10
1秒前
2秒前
大反应釜完成签到,获得积分10
2秒前
TT发布了新的文献求助10
5秒前
Jenny发布了新的文献求助10
7秒前
7秒前
完美凝竹发布了新的文献求助10
7秒前
我是站长才怪应助细腻沅采纳,获得10
8秒前
JG完成签到 ,获得积分10
8秒前
hhh完成签到,获得积分20
8秒前
科研通AI5应助想瘦的海豹采纳,获得10
9秒前
随性完成签到 ,获得积分10
9秒前
自由的信仰完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
夏夏发布了新的文献求助10
14秒前
打打应助Hangerli采纳,获得10
16秒前
完美凝竹完成签到,获得积分10
17秒前
zfzf0422发布了新的文献求助10
18秒前
蜘蛛道理完成签到 ,获得积分10
18秒前
冷傲迎梦发布了新的文献求助10
19秒前
852应助MEME采纳,获得10
19秒前
Godzilla发布了新的文献求助10
19秒前
大模型应助咕噜仔采纳,获得10
20秒前
蒋时晏应助pharmstudent采纳,获得30
20秒前
21秒前
忘羡222发布了新的文献求助20
22秒前
魏伯安发布了新的文献求助10
22秒前
23秒前
不爱吃糖完成签到,获得积分10
23秒前
24秒前
balabala发布了新的文献求助10
25秒前
睿123456完成签到,获得积分10
26秒前
此话当真完成签到,获得积分10
27秒前
29秒前
慕青应助wmmm采纳,获得10
30秒前
科研通AI2S应助夏夏采纳,获得10
30秒前
隐形曼青应助夏夏采纳,获得10
30秒前
睿123456发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824