Flexible protein–protein docking with a multitrack iterative transformer

对接(动物) 蛋白质-配体对接 计算机科学 试验装置 大分子对接 人工智能 蛋白质结构 虚拟筛选 变压器 变构调节 机器学习 化学 药物发现 工程类 生物化学 电压 电气工程 护理部 医学
作者
Lee‐Shin Chu,Jeffrey A. Ruffolo,Ameya Harmalkar,Jeffrey J. Gray
出处
期刊:Protein Science [Wiley]
卷期号:33 (2) 被引量:9
标识
DOI:10.1002/pro.4862
摘要

Abstract Conventional protein–protein docking algorithms usually rely on heavy candidate sampling and reranking, but these steps are time‐consuming and hinder applications that require high‐throughput complex structure prediction, for example, structure‐based virtual screening. Existing deep learning methods for protein–protein docking, despite being much faster, suffer from low docking success rates. In addition, they simplify the problem to assume no conformational changes within any protein upon binding (rigid docking). This assumption precludes applications when binding‐induced conformational changes play a role, such as allosteric inhibition or docking from uncertain unbound model structures. To address these limitations, we present GeoDock, a multitrack iterative transformer network to predict a docked structure from separate docking partners. Unlike deep learning models for protein structure prediction that input multiple sequence alignments, GeoDock inputs just the sequences and structures of the docking partners, which suits the tasks when the individual structures are given. GeoDock is flexible at the protein residue level, allowing the prediction of conformational changes upon binding. On the Database of Interacting Protein Structures (DIPS) test set, GeoDock achieves a 43% top‐1 success rate, outperforming all other tested methods. However, in the standard DIPS train/test splits, we discovered contamination of close homologs in the training set. After decontaminating the training set, the success rate is 31%. On the DB5.5 test set and a benchmark dataset of antibody–antigen complexes, GeoDock outperforms the deep learning models trained using the same dataset but falls behind most of the conventional methods and AlphaFold‐Multimer. GeoDock attains an average inference speed of under 1 s on a single GPU, enabling its application in large‐scale structure screening. Although binding‐induced conformational changes are still a challenge owing to limited training and evaluation data, our architecture sets up the foundation to capture this backbone flexibility. Code and a demonstration Jupyter notebook are available at https://github.com/Graylab/GeoDock .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ganlou完成签到 ,获得积分20
刚刚
微纳组刘同完成签到,获得积分10
刚刚
刚刚
菲1208完成签到,获得积分10
1秒前
theo完成签到,获得积分10
1秒前
1秒前
SongWhizz发布了新的文献求助20
2秒前
2秒前
善学以致用应助勇往直前采纳,获得10
3秒前
秀丽焦完成签到,获得积分20
3秒前
杨媛发布了新的文献求助10
3秒前
3秒前
漂亮豆芽完成签到,获得积分10
3秒前
852应助微纳组刘同采纳,获得10
4秒前
领导范儿应助fluency采纳,获得10
4秒前
由天与完成签到,获得积分10
4秒前
4秒前
无辜的猎豹完成签到 ,获得积分10
5秒前
星星发布了新的文献求助10
6秒前
开放丸子完成签到 ,获得积分10
6秒前
,,,发布了新的文献求助10
6秒前
kkneed发布了新的文献求助10
7秒前
参宿七发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
9秒前
迷路的菲音完成签到 ,获得积分10
10秒前
10秒前
小王八不念经完成签到,获得积分10
10秒前
,,,完成签到,获得积分10
11秒前
Linsey完成签到,获得积分10
12秒前
zz完成签到,获得积分10
12秒前
jackycas完成签到,获得积分10
12秒前
12秒前
坐忘完成签到 ,获得积分10
13秒前
13秒前
wblydz发布了新的文献求助10
13秒前
倪吉旭完成签到,获得积分10
13秒前
wjfan完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812