Rank-order stability of domain-specific self-esteem: A meta-analysis.

心理学 自尊 社会心理学 理论(学习稳定性) 特质 适度 秩(图论) 心理信息 发展心理学 统计 数学 组合数学 法学 政治学 梅德林 机器学习 计算机科学 程序设计语言
作者
Laura C. Dapp,Ulrich Orth
出处
期刊:Journal of Personality and Social Psychology [American Psychological Association]
标识
DOI:10.1037/pspp0000497
摘要

This meta-analysis examined the rank-order stability of domain-specific self-esteem by comprehensively synthesizing the available evidence in eight domains of self-esteem (i.e., academic, appearance, athletic, morality, romantic, social, mathematics, and verbal abilities). The analyses were based on longitudinal data from 118 independent samples, including 107,550 participants aged 4-24 years. The time lag between assessments ranged from 6 months to 20 years. As effect-size measure, we used test-retest correlations that were corrected for attenuation due to measurement error. The results suggested that individual differences in domain-specific self-esteem are relatively stable over time, with mean effect sizes ranging from .65 to .84 across domains. Rank-order stability systematically increased as a function of age, from low stability in early childhood to high stability in young adulthood. Moreover, rank-order stability systematically decreased as a function of time lag between assessments, asymptotically approaching medium-sized stabilities (ranging from .36 to .62 across domains) when the time lag became very long. Moderator analyses indicated that the findings held across differences with regard to gender and measure. In sum, the findings suggest that rank-order stability of domain-specific self-esteem is relatively high, even over long periods of time, indicating that the eight investigated facets of domain-specific self-esteem should be considered trait-like constructs. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lss关注了科研通微信公众号
刚刚
思源应助张瑞雪采纳,获得10
2秒前
2秒前
zzzq完成签到,获得积分10
3秒前
3秒前
领导范儿应助yuan采纳,获得30
4秒前
CodeCraft应助张利双采纳,获得10
5秒前
8秒前
8秒前
zyy发布了新的文献求助10
8秒前
田様应助sdahjjyk采纳,获得10
15秒前
15秒前
一昂完成签到 ,获得积分10
16秒前
轻舟发布了新的文献求助10
16秒前
Hello应助月颜采纳,获得10
17秒前
17秒前
阴天快乐发布了新的文献求助10
17秒前
Aizhy625完成签到,获得积分10
18秒前
DT发布了新的文献求助10
19秒前
慕青应助11采纳,获得10
19秒前
内向夜山应助眼角流星采纳,获得10
20秒前
汎影发布了新的文献求助10
22秒前
22秒前
hhhhhhxxxxxx应助吹吹晚风采纳,获得10
23秒前
所所应助大壮采纳,获得10
23秒前
23秒前
传奇3应助耍酷的冬莲采纳,获得80
24秒前
引子完成签到,获得积分10
25秒前
sdahjjyk完成签到,获得积分10
26秒前
轻舟完成签到,获得积分10
28秒前
sdahjjyk发布了新的文献求助10
29秒前
所所应助张利双采纳,获得30
29秒前
opera发布了新的文献求助10
30秒前
生命奋斗应助yi采纳,获得10
30秒前
31秒前
32秒前
33秒前
divedown完成签到,获得积分10
33秒前
opera完成签到,获得积分10
34秒前
34秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218048
求助须知:如何正确求助?哪些是违规求助? 2867304
关于积分的说明 8155707
捐赠科研通 2534228
什么是DOI,文献DOI怎么找? 1366805
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617911