Research on precision visual inspection technology based on new energy battery manufacturing

计算机科学 人工智能 计算机视觉 图像处理 小波 电池(电) 噪音(视频) 过程(计算) 小波变换 降噪 图像(数学) 量子力学 操作系统 物理 功率(物理)
作者
Hong Zhou,Dan Huang,Yongxing Yu
标识
DOI:10.1117/12.3006182
摘要

In recent years, the lithium battery industry has been developing rapidly, and in the process of its large-scale industrialized production, the automatic defect detection technology based on machine vision has extremely important research value. Because of the complexity of the lithium battery production environment, the defect morphology is variable, the current research results for lithium battery pole piece defect detection is relatively small. In order to meet the needs of lithium battery pole piece defect detection speed and accuracy, to solve the problems of complex background noise, defects and low contrast in the pole piece image, this paper proposes a lithium battery pole piece defect detection algorithm based on machine vision technology, firstly, adopt the topological mapping based on the weighted average neighborhood closure curve filtering template for the image noise reduction processing, and then use the wavelet transform based on the multiscale detail enhancement method for image enhancement processing;; subsequently, adopt the multi-scale detail enhancement method based on wavelet transform for image enhancement processing; and subsequently, use the topological mapping based on the weighted average neighborhood closure curve for image enhancement processing. Then, in order to solve the problem of uneven illumination and more speckle impurities in the polar film image, the area growth method is used and combined with differential geometry tools to extract the defect contour of the area to be tested; finally, the concept of Earth Move Distance (EMD) is introduced, which is used to compute the similarity between the obtained contour and various types of defect templates contours to realize the classification of defects. Experiments have shown that the algorithm in this paper improves the speed and accuracy of defect detection on the surface of the pole piece, retains the details of the defect edges, detects small defects with low contrast, and extracts the complete defect contour, which better meets the actual needs of industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
高高的天亦完成签到 ,获得积分10
2秒前
追寻书白完成签到,获得积分20
3秒前
晚街听风完成签到 ,获得积分10
4秒前
4秒前
感觉他香香的完成签到 ,获得积分10
5秒前
5秒前
牛牛要当院士喽完成签到,获得积分10
5秒前
结实的老虎完成签到,获得积分10
7秒前
坚强丹雪完成签到,获得积分10
9秒前
11秒前
13秒前
WZ0904发布了新的文献求助10
15秒前
狂野静曼完成签到 ,获得积分10
16秒前
武映易完成签到 ,获得积分10
18秒前
zzz发布了新的文献求助10
19秒前
20秒前
大蒜味酸奶钊完成签到 ,获得积分10
20秒前
鱼宇纸完成签到 ,获得积分10
20秒前
LEE完成签到,获得积分20
20秒前
20秒前
Ava应助无限的绿真采纳,获得10
22秒前
小马甲应助xiongdi521采纳,获得10
22秒前
科研通AI5应助陶醉觅夏采纳,获得200
25秒前
憨鬼憨切发布了新的文献求助10
25秒前
25秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
27秒前
28秒前
29秒前
hh应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
Eva完成签到,获得积分10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849