Research on precision visual inspection technology based on new energy battery manufacturing

计算机科学 人工智能 计算机视觉 图像处理 小波 电池(电) 噪音(视频) 过程(计算) 小波变换 降噪 图像(数学) 量子力学 操作系统 物理 功率(物理)
作者
Hong Zhou,Dan Huang,Yongxing Yu
标识
DOI:10.1117/12.3006182
摘要

In recent years, the lithium battery industry has been developing rapidly, and in the process of its large-scale industrialized production, the automatic defect detection technology based on machine vision has extremely important research value. Because of the complexity of the lithium battery production environment, the defect morphology is variable, the current research results for lithium battery pole piece defect detection is relatively small. In order to meet the needs of lithium battery pole piece defect detection speed and accuracy, to solve the problems of complex background noise, defects and low contrast in the pole piece image, this paper proposes a lithium battery pole piece defect detection algorithm based on machine vision technology, firstly, adopt the topological mapping based on the weighted average neighborhood closure curve filtering template for the image noise reduction processing, and then use the wavelet transform based on the multiscale detail enhancement method for image enhancement processing;; subsequently, adopt the multi-scale detail enhancement method based on wavelet transform for image enhancement processing; and subsequently, use the topological mapping based on the weighted average neighborhood closure curve for image enhancement processing. Then, in order to solve the problem of uneven illumination and more speckle impurities in the polar film image, the area growth method is used and combined with differential geometry tools to extract the defect contour of the area to be tested; finally, the concept of Earth Move Distance (EMD) is introduced, which is used to compute the similarity between the obtained contour and various types of defect templates contours to realize the classification of defects. Experiments have shown that the algorithm in this paper improves the speed and accuracy of defect detection on the surface of the pole piece, retains the details of the defect edges, detects small defects with low contrast, and extracts the complete defect contour, which better meets the actual needs of industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文胡萝卜关注了科研通微信公众号
刚刚
wade2016发布了新的文献求助10
1秒前
冷酷靖琪完成签到,获得积分10
1秒前
巴图鲁发布了新的文献求助10
1秒前
虎虎虎完成签到,获得积分10
2秒前
开心的谷兰完成签到,获得积分10
2秒前
2秒前
可靠雪雪完成签到,获得积分10
2秒前
36456657应助宁阿霜采纳,获得10
2秒前
2秒前
长情立诚完成签到,获得积分10
3秒前
娜写年华发布了新的文献求助10
5秒前
小王发布了新的文献求助10
5秒前
5秒前
杰瑞完成签到,获得积分10
5秒前
01231009yrjz完成签到,获得积分10
6秒前
七院应助WQ采纳,获得20
7秒前
所所应助纯情的小伙采纳,获得10
7秒前
cquank发布了新的文献求助10
8秒前
我是老大应助wwxd采纳,获得10
8秒前
8秒前
9秒前
852应助ocean采纳,获得10
9秒前
jia完成签到,获得积分10
9秒前
微不足道完成签到,获得积分10
9秒前
上官若男应助虫虫采纳,获得10
10秒前
Orange应助leee采纳,获得10
10秒前
高兴可乐发布了新的文献求助10
10秒前
bk一201一完成签到,获得积分10
10秒前
伪善关注了科研通微信公众号
10秒前
痴情的从雪完成签到,获得积分10
10秒前
11秒前
yuaner发布了新的文献求助10
12秒前
你才是小哭包完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
华仔应助神介.Tzx采纳,获得10
14秒前
Moving_Dr发布了新的文献求助10
14秒前
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230573
求助须知:如何正确求助?哪些是违规求助? 2877975
关于积分的说明 8203640
捐赠科研通 2545364
什么是DOI,文献DOI怎么找? 1375054
科研通“疑难数据库(出版商)”最低求助积分说明 647249
邀请新用户注册赠送积分活动 622264