CTUSurv: A Cell-aware Transformer-based Network with Uncertainty for Survival Prediction Using Whole Slide Images

计算机科学 人工智能 机器学习 深度学习 可靠性(半导体) 数据挖掘 功率(物理) 物理 量子力学
作者
Zhihao Tang,Lin Yang,Zongyi Chen,Liu Li,Chaozhuo Li,R. Chen,Xi Zhang,Qingfeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3526848
摘要

Image-based survival prediction through deep learning techniques represents a burgeoning frontier aimed at augmenting the diagnostic capabilities of pathologists. However, directly applying existing deep learning models to survival prediction may not be a panacea due to the inherent complexity and sophistication of whole slide images (WSIs). The intricate nature of high-resolution WSIs, characterized by sophisticated patterns and inherent noise, presents significant challenges in terms of effectiveness and trustworthiness. In this paper, we propose CTUSurv, a novel survival prediction model designed to simultaneously capture cell-to-cell and cell-to-microenvironment interactions, complemented by a region-based uncertainty estimation framework to assess the reliability of survival predictions. Our approach incorporates an innovative region sampling strategy to extract task-relevant, informative regions from high-resolution WSIs. To address the challenges posed by sophisticated biological patterns, a cell-aware encoding module is integrated to model the interactions among biological entities. Furthermore, CTUSurv includes a novel aleatoric uncertainty estimation module to provide fine-grained uncertainty scores at the region level. Extensive evaluations across four datasets demonstrate the superiority of our proposed approach in terms of both predictive accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qq78910发布了新的文献求助10
1秒前
满眼星辰发布了新的文献求助10
2秒前
2秒前
2秒前
张龙雨发布了新的文献求助10
3秒前
kingwill应助迟大猫采纳,获得20
3秒前
4秒前
缥缈的采蓝完成签到,获得积分10
4秒前
123456发布了新的文献求助10
5秒前
slx发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
路卡利欧发布了新的文献求助10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
眯眯眼的世界应助赵胜男采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
迟大猫应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助大大怪采纳,获得10
9秒前
啵乐乐发布了新的文献求助10
9秒前
9秒前
田様应助还好采纳,获得10
10秒前
果味桃完成签到,获得积分20
10秒前
日上三竿完成签到,获得积分10
10秒前
11秒前
lanser发布了新的文献求助20
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153