BaNDyT: Bayesian Network modeling of molecular Dynamics Trajectories

计算机科学 Python(编程语言) 软件 概率逻辑 贝叶斯网络 图形用户界面 工作流程 图形模型 分子动力学 理论计算机科学 机器学习 数据挖掘 人工智能 程序设计语言 化学 数据库 计算化学
作者
Elizaveta Mukhaleva,Babgen Manookian,Hanyu Chen,Ning Ma,Wenyuan Wei,Konstancja Urbaniak,Grigoriy Gogoshin,S. Bhattacharya,Nagarajan Vaidehi,Andréi S. Rodin,Sergio Branciamore
标识
DOI:10.1101/2024.11.06.622318
摘要

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical datasets. Concurrently, our ability to perform long-timescale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially. However, the analysis of MD simulation trajectories has not been data-driven but rather dependent on the user's prior knowledge of the systems, thus limiting the scope and utility of the MD simulations. Recently, we pioneered using BNM for analyzing the MD trajectories of protein complexes. The resulting BN models yield novel fully data-driven insights into the functional importance of the amino acid residues that modulate proteins' function. In this report, we describe the BaNDyT software package that implements the BNM specifically attuned to the MD simulation trajectories data. We believe that BaNDyT is the first software package to include specialized and advanced features for analyzing MD simulation trajectories using a probabilistic graphical network model. We describe here the software's uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. This provides a powerful and versatile mechanism for users to control the workflow. As an application example, we have utilized this methodology and associated software to study how membrane proteins, specifically the G protein-coupled receptors, selectively couple to G proteins. The software can be used for analyzing MD trajectories of any protein as well as polymeric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助要发Na_trure采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
怕黑的海豚完成签到 ,获得积分10
1秒前
2秒前
2秒前
白雾完成签到 ,获得积分10
2秒前
万能图书馆应助zcy采纳,获得10
3秒前
3秒前
LiuZhe发布了新的文献求助10
3秒前
4秒前
4秒前
852应助Maomao采纳,获得10
4秒前
情怀应助李逸玄采纳,获得10
4秒前
4秒前
5秒前
TEW天权发布了新的文献求助10
5秒前
蛙蛙发布了新的文献求助10
5秒前
脆脆鲨完成签到 ,获得积分10
5秒前
5秒前
5秒前
抗体小王完成签到,获得积分10
5秒前
piggip发布了新的文献求助10
5秒前
weven完成签到,获得积分10
6秒前
7秒前
Javert1发布了新的文献求助10
7秒前
汉堡包应助而发的采纳,获得10
7秒前
小二郎应助辰辰羽采纳,获得10
8秒前
周周啊发布了新的文献求助10
8秒前
lingzi1015发布了新的文献求助10
8秒前
处处铃铛响完成签到,获得积分10
9秒前
9秒前
爆米花应助dyxx采纳,获得10
9秒前
六六六完成签到,获得积分10
10秒前
10秒前
Xi发布了新的文献求助10
10秒前
11秒前
怕黑天晴完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541333
求助须知:如何正确求助?哪些是违规求助? 3118565
关于积分的说明 9336428
捐赠科研通 2816508
什么是DOI,文献DOI怎么找? 1548438
邀请新用户注册赠送积分活动 721530
科研通“疑难数据库(出版商)”最低求助积分说明 712720