Research on LSTM-driven UAV path planning

计算机科学 运动规划 路径(计算) 人工智能 计算机视觉 实时计算 机器人 计算机网络
作者
Dianyi Zhou,Xi Du,Shiyi Liu,Qingyu Su,Hongyang Guo
标识
DOI:10.1117/12.3049651
摘要

In decision problems, single step decision making refers to making a decision at each time step based only on the current state, without considering the long-term state or future effects. This approach is suitable for those scenarios with immediate feedback and operational impact, but can be challenging when facing complex and long-term dependent environments. We will explore the advantages and disadvantages of single step decision making and how this strategy can be used to optimize the decision process in practice. This innovative algorithm integrates the memory capabilities of recurrent neural networks (RNNs) into deep reinforcement learning frameworks. Unlike traditional Deep Q Network (DQN) setups, where feedforward neural networks are typically used for the the RPP-LSTM employs an LSTM network as the Q-value network. This integration allows the Q network to retain memory of previous environmental states and actions, thereby addressing the myopic nature of decision-making prevalent in methods. By leveraging LSTM's ability to capture and utilize temporal dependencies, the RPP-LSTM algorithm enhances the UAV's path planning capability by considering a broader context of environmental changes and past decisions. This approach is particularly beneficial in dynamic environments where the immediate decision based solely on current state information may not be optimal. The LSTM-equipped Q-value network can effectively learn and adapt to varying environmental conditions, leading in tasks. Furthermore, the incorporates a stratified punishment and reward mechanism designed to optimize the rationality of UAV path planning. This function encourages the UAV to make decisions that not only achieve immediate goals but also contribute to long-term planning objectives, ensuring strategic adaptability in complex scenarios. Simulation results demonstrate the superiority of the RPP-LSTM algorithm over traditional approaches relying on feedforward neural networks (FNNs). It exhibits enhanced adaptability to complex environments and achieves superior performance in terms of both robustness and accuracy in real-time UAV path planning scenarios. This integration of LSTM with deep reinforcement learning represents a significant advancement towards more intelligent and effective autonomous UAV operations in dynamic and challenging environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
小黄油完成签到,获得积分10
3秒前
bocky完成签到 ,获得积分10
4秒前
yangerbao发布了新的文献求助10
4秒前
MissZ发布了新的文献求助30
4秒前
4秒前
4秒前
二三发布了新的文献求助10
4秒前
雪白的雨竹完成签到,获得积分10
5秒前
Johnson完成签到 ,获得积分10
6秒前
SY完成签到,获得积分10
6秒前
6秒前
优秀傲松完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Fyyyyyyyyyz完成签到,获得积分10
9秒前
敏感代云完成签到,获得积分10
9秒前
猪猪发布了新的文献求助10
9秒前
AAAADiao完成签到 ,获得积分10
9秒前
lalala完成签到,获得积分10
10秒前
归于晏完成签到,获得积分10
10秒前
zqq完成签到,获得积分10
10秒前
10秒前
10秒前
吱吱草莓派完成签到 ,获得积分10
11秒前
敏感代云发布了新的文献求助10
12秒前
来来完成签到,获得积分10
12秒前
lvyan完成签到,获得积分10
12秒前
雷培发布了新的文献求助10
12秒前
13秒前
鳗鱼不尤完成签到,获得积分10
13秒前
13秒前
13秒前
changyongcheng完成签到 ,获得积分10
14秒前
小蘑菇应助uwasa采纳,获得10
15秒前
zhinian28完成签到,获得积分10
16秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257305
求助须知:如何正确求助?哪些是违规求助? 2899227
关于积分的说明 8304469
捐赠科研通 2568509
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630703