Bearing life prediction method based on novel health indicators and improved similarity curve matching

相似性(几何) 匹配(统计) 方位(导航) 计算机科学 人工智能 模式识别(心理学) 统计 数据挖掘 数学 图像(数学)
作者
Jing Zhang,Chengqi Zhang,Yangbiao Wu,Guiyi Liu,Bing Ouyang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad91d3
摘要

Abstract To tackle the issues of low accuracy in similarity curve matching and the challenges in measuring the similarity of degraded curve segments in rolling bearing life prediction methods, we propose a novel bearing remaining useful life (RUL) prediction method utilizing new health indicators and improved similarity curve matching techniques. Initially, time and frequency domain features are extracted from the bearing vibration signals. Subsequently, the multi-dimensional features are meticulously screened using monotonicity, Spearman's correlation, and uncertainty metrics to construct the health indicator (HI) and the health indicator library for the bearing. Subsequently, the support vector data description (SVDD) combined with the PID search algorithm is employed to ascertain the initial prediction time of the bearing and to construct the corresponding health indicator library. Following this, both global and local feature capture are conducted using dual dynamic time warping (DDTW) in conjunction with a sliding window to predict the remaining service life of rolling bearings.
The proposed method is validated on the PHM2012 and XJTU-SY datasets and benchmarked against the latest research. The results demonstrate that our method significantly enhances the prediction accuracy of the remaining useful life of bearings, underscoring the effectiveness and superiority of the proposed approach.and superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微尘之末完成签到,获得积分10
1秒前
CES_SH应助科研通管家采纳,获得20
1秒前
自觉松发布了新的文献求助10
1秒前
1秒前
Winkhl完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
老嫂子的春天完成签到,获得积分10
1秒前
1秒前
852应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
qiqi发布了新的文献求助30
3秒前
3秒前
3秒前
Winkhl发布了新的文献求助10
4秒前
鱿鱼完成签到,获得积分10
4秒前
4秒前
大力蓝完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
狂野的冰棍完成签到,获得积分10
6秒前
6秒前
zbs发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
Kristal发布了新的文献求助30
8秒前
8秒前
M橘子发布了新的文献求助30
8秒前
ShengQ完成签到,获得积分10
9秒前
9秒前
9秒前
鱿鱼发布了新的文献求助10
10秒前
yuyukeke完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181