High‐Shell Sulfur Doping Enhances Mn‐N4 Spin States and Boosts Oxygen Reduction Reaction Performance in both Acidic and Alkaline Media

催化作用 硫黄 兴奋剂 材料科学 金属 无机化学 化学工程 化学 冶金 有机化学 光电子学 工程类
作者
Yuan Li,Haoran Wu,Yue Yu,Miao‐Ying Chen,Kuangmin Zhao,Weidong Li,Shifeng Rong,Dongping Xue,Jianan Zhang,Bang‐An Lu
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202411678
摘要

The development of platinum group metal-free catalysts for the oxygen reduction reaction (ORR) is critical to advancing sustainable energy conversion technologies. Manganese (Mn)-based catalysts, known for their reduced toxicity and promising durability, have traditionally exhibited lower ORR activity compared to state-of-the-art iron-nitrogen-carbon (Fe-N-C) catalysts. In this study, a highly efficient Mn-N-C-S catalyst is presented, engineered through a sulfur-mediated high-shell coordinated doping strategy, that markedly enhances ORR activity and stability. The Mn-N-C-S catalyst achieves a record-high half-wave potential of 0.94 V in alkaline media, among the highest values reported for Mn-based catalysts. Additionally, in acidic media, it exhibits a half-wave potential of 0.80 V, placing it among the top-performing M-N-C catalysts. The catalyst also demonstrates a high peak power density of 0.82 W cm-2 in H2-O2 fuel cells and 0.264 W cm-2 in Zn-air batteries, outperforming previously reported Mn-based catalysts. Both experimental findings and theoretical computations suggest that the high-shell S-doping can increase the spin density of Mn sites, strengthen Mn-N bonds, and thereby improve the durability of Mn-N4 sites. This work underscores the effectiveness of high-shell sulfur doping and paving the way for their deployment in the cathodes of fuel cells and metal-air batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的纸飞机完成签到,获得积分10
刚刚
FashionBoy应助王勾勾采纳,获得10
1秒前
2秒前
Jke完成签到,获得积分10
2秒前
2秒前
大个应助紫梦采纳,获得10
3秒前
yeqing完成签到,获得积分10
4秒前
淡定的曼易应助zy采纳,获得10
4秒前
4秒前
不语完成签到,获得积分10
5秒前
Andy_Cheung举报李方方方方求助涉嫌违规
5秒前
吴世勋发布了新的文献求助10
5秒前
wanci应助优等生采纳,获得10
6秒前
醒醒发布了新的文献求助10
6秒前
7秒前
tl完成签到,获得积分10
8秒前
临时演员发布了新的文献求助10
9秒前
zzz完成签到,获得积分10
9秒前
bkagyin应助123采纳,获得10
9秒前
10秒前
11秒前
波力海苔发布了新的文献求助10
11秒前
思源应助jj采纳,获得10
12秒前
五55完成签到,获得积分10
12秒前
13秒前
13秒前
英姑应助sdl采纳,获得10
13秒前
冷酷向彤发布了新的文献求助10
14秒前
文章中中中完成签到,获得积分10
14秒前
努力搬砖努力干完成签到,获得积分10
14秒前
慕青应助肥肥福气满满采纳,获得10
14秒前
orixero应助MathFun采纳,获得10
15秒前
15秒前
16秒前
16秒前
研友_LNoy5n完成签到,获得积分20
16秒前
Leif应助Betty采纳,获得10
17秒前
Andy完成签到 ,获得积分10
17秒前
小蘑菇应助AteeqBaloch采纳,获得10
18秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421