Stereo digital image correlation using binocular super-resolution

计算机视觉 人工智能 计算机科学 分辨率(逻辑) 图像(数学) 数字图像相关 双眼视差 立体图像 立体视觉 计算机图形学(图像) 光学 物理
作者
Zhuoyi Yin,Yuan Fang,Zixiang Tong,Xiaoyuan He,Fujun Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad976a
摘要

Abstract The spatial resolution and measurement accuracy of the digital image correlation (DIC) method are constrained by camera resolution. This limitation is primarily determined by hardware costs. However, in current stereo DIC measurements, only the gray level or its gradient from two images is used for integer-pixel matching and sub-pixel optimization. It implicitly treats the two images from different viewpoints as independent entities before correlating them. However, the inherent structural information has not been fully utilized. This previously overlooked structural information provides a novel approach to enhancing the accuracy of DIC by leveraging the inherent correlations between the stereo image pairs. The realization of binocular super-resolution typically requires a relatively small parallax. Moreover, the DIC method can achieve image window pairing with small parallax through pre-matching. This implies that binocular super-resolution and stereo-DIC can complement each other by sharing information. In this paper, the DIC method is employed for whole-pixel image matching, while the binocular super-resolution method, based on deep learning, is applied to process the matched image pairs. Building on previous experiments, extensive datasets containing diverse experimental scenes and various speckle patterns were compiled and utilized. Furthermore, the DIC method can establish training datasets with minimal parallax through integer-pixel matching, thereby achieving highly effective super-resolution results.Experimental results demonstrate that super-resolution images with a higher signal-to-noise ratio can be obtained. Additionally, it effectively provides more image details, which enhance the calculation accuracy and resolution of DIC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆发布了新的文献求助10
刚刚
刚刚
123123完成签到,获得积分10
1秒前
汉堡包应助春风十二夜采纳,获得10
1秒前
hope发布了新的文献求助20
1秒前
可爱的函函应助芝士棒猪采纳,获得10
2秒前
星辰大海应助潇洒的冰烟采纳,获得10
2秒前
弥豆子发布了新的文献求助10
2秒前
科研小白发布了新的文献求助10
2秒前
研究牲发布了新的文献求助10
3秒前
小石榴妈妈完成签到 ,获得积分10
3秒前
小梦完成签到,获得积分10
3秒前
小二郎应助LSC采纳,获得10
4秒前
cg完成签到 ,获得积分10
4秒前
bkagyin应助mudiboyang采纳,获得10
4秒前
4秒前
可玩性完成签到 ,获得积分10
5秒前
5秒前
飞翔的月亮完成签到,获得积分10
6秒前
lolo完成签到,获得积分10
7秒前
8秒前
潇洒的白昼完成签到,获得积分10
8秒前
Dazou应助灰灰采纳,获得10
8秒前
nozero应助ttttttttt采纳,获得30
9秒前
9秒前
斯文雪青完成签到,获得积分10
10秒前
ying发布了新的文献求助10
10秒前
春风十二夜完成签到,获得积分10
10秒前
谨慎的友安完成签到 ,获得积分10
10秒前
江上清风游完成签到,获得积分10
10秒前
10秒前
桐桐完成签到,获得积分0
11秒前
123完成签到,获得积分10
11秒前
nozero应助123采纳,获得30
12秒前
大模型应助壮观以松采纳,获得10
12秒前
缪甲烷完成签到,获得积分10
12秒前
向阳完成签到,获得积分10
12秒前
MchemG应助catesina采纳,获得10
12秒前
吃的饱饱呀完成签到 ,获得积分10
13秒前
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725821
求助须知:如何正确求助?哪些是违规求助? 3270855
关于积分的说明 9969218
捐赠科研通 2986238
什么是DOI,文献DOI怎么找? 1638149
邀请新用户注册赠送积分活动 777978
科研通“疑难数据库(出版商)”最低求助积分说明 747365