Enhancing hurdles athletes’ performance analysis: A comparative study of cnn-based pose estimation frameworks

计算机科学 姿势 运动员 人工智能 估计 机器学习 医学 物理疗法 管理 经济
作者
Pouya Jafarzadeh,Luca Zelioli,Petra Virjonen,Fahimeh Farahnakian,Paavo Nevalainen,Jukka Heikkonen
出处
期刊:Multimedia Tools and Applications [Springer Nature]
标识
DOI:10.1007/s11042-024-20587-z
摘要

Abstract Human pose estimation has gained significant attention in recent years for its potential to revolutionize athletic performance analysis, enhance understanding of player interactions, and optimize training regimes. Deep learning models, particularly Convolutional Neural Networks (CNNs), have outperformed traditional methods in pose estimation tasks. This study addresses a gap in sports analytics by applying two popular CNN-based frameworks, YOLO and DeepLabCut, to analyze pose estimation in hurdles athletes. Videos of a single female athlete during training sessions were used, and frames were manually annotated to capture three critical foot landmarks: ankle, heel, and big toe. The results highlight YOLOv8l’s superior accuracy, achieving a Percentage of Correct Keypoints (PCK) of 79% for these landmarks, while demonstrating the feasibility of a low-cost setup for practical applications. Visual comparisons further validate the model’s effectiveness in real-world scenarios. Additionally, YOLO predictions were utilized to analyze step progression in the time domain, providing actionable insights into athletic movement. This study underscores that even modest video equipment, combined with CNN-based methods, can equip coaches with powerful tools to analyze and optimize movements and techniques, paving the way for data-driven advancements in sports performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助加油鸭采纳,获得10
刚刚
邓帆发布了新的文献求助10
刚刚
程小懒完成签到,获得积分10
1秒前
嗡嗡嗡发布了新的文献求助10
2秒前
SQDHZJ完成签到,获得积分10
2秒前
高贵水壶发布了新的文献求助10
2秒前
zz发布了新的文献求助10
2秒前
Akim应助杨金城采纳,获得10
3秒前
xxxy完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
Hello应助滕侑林采纳,获得10
5秒前
迟大猫应助yo一天采纳,获得20
6秒前
爆米花应助朝暮行行采纳,获得10
6秒前
依旧发布了新的文献求助10
6秒前
Owen应助文静灵阳采纳,获得10
8秒前
9秒前
JiaQi发布了新的文献求助10
9秒前
深情安青应助zz采纳,获得10
9秒前
GQL完成签到 ,获得积分10
11秒前
shoolarli发布了新的文献求助10
11秒前
12秒前
高贵水壶完成签到,获得积分10
13秒前
华仔应助晚风采纳,获得10
15秒前
LLLLLLLLLLLLL发布了新的文献求助10
15秒前
Maliketh完成签到,获得积分10
16秒前
薛亚妮完成签到 ,获得积分20
16秒前
18秒前
JiaQi完成签到,获得积分20
19秒前
奕颖王发布了新的文献求助10
20秒前
陌陌完成签到,获得积分10
20秒前
21秒前
hu完成签到,获得积分10
21秒前
善良又亦完成签到 ,获得积分10
22秒前
22秒前
23秒前
李健应助SCI的李采纳,获得10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525433
求助须知:如何正确求助?哪些是违规求助? 3106002
关于积分的说明 9278037
捐赠科研通 2803510
什么是DOI,文献DOI怎么找? 1538759
邀请新用户注册赠送积分活动 716339
科研通“疑难数据库(出版商)”最低求助积分说明 709395