荧光
化学
癌症检测
纳米技术
放射化学
分析化学(期刊)
癌症
材料科学
环境化学
光学
物理
医学
内科学
作者
Alaa Shafie,Amal Adnan Ashour
标识
DOI:10.1080/10408347.2025.2455381
摘要
Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu2+ in environmental and biological samples but also for visualizing its distribution through fluorescence imaging. These probes offering robust performance under diverse conditions. Fluorescence imaging using these probes plays a pivotal role in cancer diagnosis, prognosis, and treatment monitoring by offering real-time visualization of tumor morphology and biomolecular interactions at cellular and tissue levels. This review aims to explore the diversity of organic fluorescence and colorimetric probes developed for the detection of Cu2+, with a particular focus on their applications in fluorescence imaging from 2020 to 2024. The discussion highlights the use of these probes in visualizing Cu2+ in various cancer cells such as SiHa, HCT 116, GES-1, RAW 264.7, HepG2, HeLa, MCF-7 and DrG cell lines, tissues, and small living organisms. By targeting cancer-specific pathways and monitoring copper-related physiological changes, these probes have significantly advanced the fields of cancer diagnostics and therapeutics. This comprehensive analysis emphasizes the potential of fluorescence imaging as a powerful tool for elucidating the roles of Cu2+ in health and disease, paving the way for future advances in biomedical research.
科研通智能强力驱动
Strongly Powered by AbleSci AI