Machine learning–enhanced surface-enhanced spectroscopic detection of polycyclic aromatic hydrocarbons in the human placenta

人胎盘 人类健康 化学 环境化学 胎盘 产科 医学 环境卫生 生物 胎儿 怀孕 遗传学
作者
Oara Neumann,Yilong Ju,Andrés B. Sánchez-Alvarado,Guodong Zhou,Weiwu Jiang,Bhagavatula Moorthy,Melissa Suter,Ankit Patel,Peter Nordlander,Naomi J. Halas
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (7)
标识
DOI:10.1073/pnas.2422537122
摘要

The detection and identification of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, polycyclic aromatic compounds (PACs), are essential for environmental and health monitoring, for assessing toxicological exposure and their associated health risks. PAHs/PACs are the most dangerous chemicals found in tobacco smoke, and cigarette use during pregnancy can convey these molecules to the developing fetus through the placenta. This exposure is associated with many negative health outcomes, from premature birth to sudden infant death syndrome and adverse neurodevelopmental disorders. This study demonstrates the use of surface-enhanced Raman and surface-enhanced infrared absorption spectroscopies for direct detection of PAHs/PACs in human placental tissue. We applied two spectroscopy-informed machine learning algorithms, Characteristic Peak Extraction (CaPE) and Characteristic Peak Similarity (CaPSim), to identify the specific PAHs and PACs present in the placenta of women who smoked tobacco cigarettes in pregnancy compared to spectra of the placenta from self-reported nonsmokers. CaPE and CaPSim analysis enabled a clear distinction between these two groups. Independent verification was accomplished by detecting PAH-DNA and PAC-DNA adducts in the smoking group by means of a 32 P-postlabeling assay. These findings highlight the effectiveness of combining surface-enhanced spectroscopies with informed ML analysis for the streamlined detection of hazardous environmental compounds in human tissues, suggesting broader applications in clinical diagnostics and public health surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助zz采纳,获得10
刚刚
wang5945发布了新的文献求助10
2秒前
爱科研的小多肉完成签到,获得积分10
3秒前
wangyy65完成签到 ,获得积分10
3秒前
4秒前
4秒前
Mathew完成签到,获得积分20
4秒前
兔BF完成签到,获得积分10
4秒前
5秒前
LHW发布了新的文献求助10
5秒前
6秒前
leiyang49完成签到,获得积分10
7秒前
SUS完成签到,获得积分10
7秒前
Lain完成签到,获得积分10
7秒前
续续完成签到,获得积分10
8秒前
路过的骑士完成签到 ,获得积分10
8秒前
Ultraviolet发布了新的文献求助10
9秒前
DWL完成签到,获得积分10
9秒前
Paris发布了新的文献求助10
9秒前
10秒前
绿波电龙发布了新的文献求助10
11秒前
vlots应助舒适智宸采纳,获得30
11秒前
酷波er应助凌兰采纳,获得10
13秒前
踏实谷蓝完成签到 ,获得积分10
15秒前
小小完成签到,获得积分10
16秒前
川ccc完成签到,获得积分10
16秒前
17秒前
謃河鷺起完成签到,获得积分10
19秒前
19秒前
20秒前
Orange应助杨杨杨采纳,获得10
22秒前
梅西完成签到 ,获得积分10
22秒前
小二郎应助薇薇采纳,获得10
23秒前
苏世完成签到,获得积分10
24秒前
24秒前
zho发布了新的文献求助10
24秒前
yy应助任大师兄采纳,获得30
24秒前
科研CY完成签到 ,获得积分10
25秒前
JamesPei应助qia采纳,获得30
26秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792