清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning–enhanced surface-enhanced spectroscopic detection of polycyclic aromatic hydrocarbons in the human placenta

人胎盘 人类健康 化学 环境化学 胎盘 产科 医学 环境卫生 生物 胎儿 怀孕 遗传学
作者
Oara Neumann,Yilong Ju,Andrés B. Sánchez-Alvarado,Guodong Zhou,Weiwu Jiang,Bhagavatula Moorthy,Melissa Suter,Ankit Patel,Peter Nordlander,Naomi J. Halas
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (7)
标识
DOI:10.1073/pnas.2422537122
摘要

The detection and identification of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, polycyclic aromatic compounds (PACs), are essential for environmental and health monitoring, for assessing toxicological exposure and their associated health risks. PAHs/PACs are the most dangerous chemicals found in tobacco smoke, and cigarette use during pregnancy can convey these molecules to the developing fetus through the placenta. This exposure is associated with many negative health outcomes, from premature birth to sudden infant death syndrome and adverse neurodevelopmental disorders. This study demonstrates the use of surface-enhanced Raman and surface-enhanced infrared absorption spectroscopies for direct detection of PAHs/PACs in human placental tissue. We applied two spectroscopy-informed machine learning algorithms, Characteristic Peak Extraction (CaPE) and Characteristic Peak Similarity (CaPSim), to identify the specific PAHs and PACs present in the placenta of women who smoked tobacco cigarettes in pregnancy compared to spectra of the placenta from self-reported nonsmokers. CaPE and CaPSim analysis enabled a clear distinction between these two groups. Independent verification was accomplished by detecting PAH-DNA and PAC-DNA adducts in the smoking group by means of a 32 P-postlabeling assay. These findings highlight the effectiveness of combining surface-enhanced spectroscopies with informed ML analysis for the streamlined detection of hazardous environmental compounds in human tissues, suggesting broader applications in clinical diagnostics and public health surveillance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝贝完成签到 ,获得积分10
6秒前
25秒前
28秒前
如意2023完成签到 ,获得积分10
37秒前
41秒前
50秒前
rockyshi完成签到 ,获得积分10
52秒前
54秒前
gengsumin发布了新的文献求助10
56秒前
BowieHuang应助研友_LkD29n采纳,获得10
56秒前
maggiexjl完成签到,获得积分10
59秒前
含蓄的魔镜完成签到 ,获得积分10
59秒前
戴云溥应助科研通管家采纳,获得30
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
YZY完成签到 ,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
1分钟前
烟花应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
dwz发布了新的文献求助10
1分钟前
精明一寡发布了新的文献求助10
1分钟前
1分钟前
我有一只猫完成签到 ,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助20
1分钟前
Qian完成签到 ,获得积分10
1分钟前
雾见春完成签到 ,获得积分10
1分钟前
爆米花应助白华苍松采纳,获得10
2分钟前
wave8013发布了新的文献求助20
2分钟前
小李老博发布了新的文献求助10
2分钟前
2分钟前
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
yuntong完成签到 ,获得积分10
2分钟前
2分钟前
gengsumin发布了新的文献求助10
2分钟前
无花果应助研友_LkD29n采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590652
求助须知:如何正确求助?哪些是违规求助? 4676605
关于积分的说明 14795452
捐赠科研通 4634306
什么是DOI,文献DOI怎么找? 2532871
邀请新用户注册赠送积分活动 1501349
关于科研通互助平台的介绍 1468741