Machine learning–enhanced surface-enhanced spectroscopic detection of polycyclic aromatic hydrocarbons in the human placenta

人胎盘 人类健康 化学 环境化学 胎盘 产科 医学 环境卫生 生物 胎儿 怀孕 遗传学
作者
Oara Neumann,Yilong Ju,Andrés B. Sánchez-Alvarado,Guodong Zhou,Weiwu Jiang,Bhagavatula Moorthy,Melissa Suter,Ankit Patel,Peter Nordlander,Naomi J. Halas
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (7)
标识
DOI:10.1073/pnas.2422537122
摘要

The detection and identification of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, polycyclic aromatic compounds (PACs), are essential for environmental and health monitoring, for assessing toxicological exposure and their associated health risks. PAHs/PACs are the most dangerous chemicals found in tobacco smoke, and cigarette use during pregnancy can convey these molecules to the developing fetus through the placenta. This exposure is associated with many negative health outcomes, from premature birth to sudden infant death syndrome and adverse neurodevelopmental disorders. This study demonstrates the use of surface-enhanced Raman and surface-enhanced infrared absorption spectroscopies for direct detection of PAHs/PACs in human placental tissue. We applied two spectroscopy-informed machine learning algorithms, Characteristic Peak Extraction (CaPE) and Characteristic Peak Similarity (CaPSim), to identify the specific PAHs and PACs present in the placenta of women who smoked tobacco cigarettes in pregnancy compared to spectra of the placenta from self-reported nonsmokers. CaPE and CaPSim analysis enabled a clear distinction between these two groups. Independent verification was accomplished by detecting PAH-DNA and PAC-DNA adducts in the smoking group by means of a 32 P-postlabeling assay. These findings highlight the effectiveness of combining surface-enhanced spectroscopies with informed ML analysis for the streamlined detection of hazardous environmental compounds in human tissues, suggesting broader applications in clinical diagnostics and public health surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIVE完成签到,获得积分10
1秒前
上官若男应助lewu采纳,获得10
1秒前
你猜发布了新的文献求助10
1秒前
秋风之墩完成签到,获得积分10
2秒前
2秒前
Sunny完成签到 ,获得积分0
3秒前
3秒前
三月繁花发布了新的文献求助10
3秒前
4秒前
彭薇颖完成签到,获得积分20
4秒前
风趣的惜儿完成签到,获得积分10
4秒前
5秒前
5秒前
我是老大应助外向访卉采纳,获得10
5秒前
在水一方应助耍酷含芙采纳,获得10
5秒前
CHD发布了新的文献求助10
6秒前
英俊的铭应助Wency采纳,获得10
6秒前
7秒前
five发布了新的文献求助10
7秒前
hongshao完成签到,获得积分10
7秒前
英俊的铭应助幽默的滑板采纳,获得10
7秒前
听说发布了新的文献求助10
7秒前
Rofger完成签到 ,获得积分10
7秒前
orixero应助东郭凝蝶采纳,获得10
8秒前
赘婿应助Rita采纳,获得10
8秒前
量子星尘发布了新的文献求助50
9秒前
Thexun发布了新的文献求助30
9秒前
surxwy完成签到,获得积分10
10秒前
10秒前
科研通AI5应助安详小丸子采纳,获得10
10秒前
烟花应助何rj采纳,获得10
11秒前
11秒前
12秒前
13秒前
思源应助阳佟半仙采纳,获得10
13秒前
13秒前
FashionBoy应助Oceanstal采纳,获得10
14秒前
14秒前
14秒前
lewu完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608665
求助须知:如何正确求助?哪些是违规求助? 4015152
关于积分的说明 12432228
捐赠科研通 3696386
什么是DOI,文献DOI怎么找? 2037989
邀请新用户注册赠送积分活动 1071068
科研通“疑难数据库(出版商)”最低求助积分说明 954975