干旱
土壤碳
环境科学
干旱指数
土壤水分
生态学
气候变化
全球变化
含水量
土壤科学
大气科学
生物
地质学
岩土工程
作者
Junmin Pei,Changming Fang,Bo Li,Ming Nie,Jinquan Li
摘要
ABSTRACT Global warming is generally predicted to increase aridity in drylands, while the effects of aridity changes on microbial carbon use efficiency (CUE) and its linkage to soil organic carbon (SOC) storage remain unresolved, limiting the accuracy of soil carbon dynamic predictions under changing climates. Here, by employing large‐scale soil sampling from 50 sites along an ~6000 km aridity gradient in northern China, we report a significant decreasing trend in microbial CUE (ranging from approximately 0.07 to 0.59 across the aridity gradient) with increasing aridity. The negative effect of aridity on microbial CUE was further verified by an independent moisture manipulation experiment, which revealed that CUE was lower under lower moisture levels than under higher moisture levels. Aridity‐induced increases in physicochemical protection or decreases in microbial diversity primarily mediated the decrease in CUE with increasing aridity. Moreover, we found a highly positive microbial CUE–SOC relationship, and incorporating CUE improved the explanatory power of SOC variations along the aridity gradient. Our findings provide empirical evidence for aridity‐induced reductions in microbial CUE over a broad geographic scale and highlight that increasing aridity may be a crucial mechanism underlying SOC loss by suppressing the ability of soil microorganisms to sequester carbon.
科研通智能强力驱动
Strongly Powered by AbleSci AI