Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes

生物 表型 计算生物学 进化生物学 遗传学 基因
作者
Deborah Kunkel,Peter Sørensen,Vijay Shankar,Fabio Morgante
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:21 (1): e1011519-e1011519
标识
DOI:10.1371/journal.pgen.1011519
摘要

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash , a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss , an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in the UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data set has smaller sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Ronan完成签到 ,获得积分10
2秒前
Zx_1993应助虚拟的乐萱采纳,获得10
2秒前
巫马百招完成签到,获得积分10
3秒前
4秒前
大模型应助离离原上草采纳,获得10
8秒前
NiNi发布了新的文献求助10
8秒前
封梵发布了新的文献求助20
8秒前
华仔应助qfchen0716网易采纳,获得10
9秒前
因心完成签到,获得积分10
10秒前
在水一方应助wangy采纳,获得10
12秒前
专注的映萱完成签到,获得积分10
13秒前
Bear完成签到,获得积分10
13秒前
慕落清秋完成签到 ,获得积分10
15秒前
研友_8op0RL发布了新的文献求助10
15秒前
jieni完成签到,获得积分10
18秒前
20秒前
20秒前
上官若男应助激情的乌龟采纳,获得10
22秒前
23秒前
浮游应助xiaofenzi采纳,获得10
24秒前
科研通AI6应助自由蓉采纳,获得10
24秒前
24秒前
柚子完成签到,获得积分10
24秒前
26秒前
科研通AI6应助络噬元兽采纳,获得10
26秒前
共享精神应助hubuyyl采纳,获得10
27秒前
Cathy_Durham发布了新的文献求助10
29秒前
欣慰煎蛋应助Jimmy Ko采纳,获得10
30秒前
打死小胖纸完成签到,获得积分10
31秒前
31秒前
34秒前
所所应助封梵采纳,获得10
36秒前
十辰完成签到,获得积分10
36秒前
小卡子发布了新的文献求助10
36秒前
Jasper应助NiNi采纳,获得10
38秒前
38秒前
内向苠完成签到 ,获得积分10
39秒前
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207577
求助须知:如何正确求助?哪些是违规求助? 4385457
关于积分的说明 13656909
捐赠科研通 4244029
什么是DOI,文献DOI怎么找? 2328560
邀请新用户注册赠送积分活动 1326245
关于科研通互助平台的介绍 1278450