Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes

生物 表型 计算生物学 进化生物学 遗传学 基因
作者
Deborah Kunkel,Peter Sørensen,Vijay Shankar,Fabio Morgante
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:21 (1): e1011519-e1011519
标识
DOI:10.1371/journal.pgen.1011519
摘要

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash , a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss , an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in the UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data set has smaller sample size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助肥肥菲采纳,获得10
刚刚
hollow完成签到,获得积分20
刚刚
哈吉米发布了新的文献求助10
刚刚
Cecilia完成签到 ,获得积分10
1秒前
科目三应助池鱼采纳,获得30
1秒前
1秒前
小酒窝周周完成签到 ,获得积分10
2秒前
现实的笑槐完成签到,获得积分10
2秒前
Elf完成签到,获得积分10
2秒前
柯善若发布了新的文献求助10
2秒前
Liu_cx完成签到,获得积分10
2秒前
丁昊天完成签到,获得积分10
3秒前
LIU发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
方塘完成签到,获得积分10
5秒前
6秒前
curtain完成签到,获得积分10
6秒前
丘比特应助快乐篮球采纳,获得10
6秒前
7秒前
hzl发布了新的文献求助10
8秒前
柯善若完成签到,获得积分10
8秒前
张巨锋发布了新的文献求助10
8秒前
8秒前
孔晓龙完成签到,获得积分20
9秒前
Archer发布了新的文献求助10
9秒前
风趣雪冥发布了新的文献求助10
9秒前
9秒前
10秒前
lin发布了新的文献求助30
10秒前
传奇3应助日暮倚修竹采纳,获得10
10秒前
zhangzhima完成签到,获得积分10
10秒前
GLEAM发布了新的文献求助10
10秒前
10秒前
合适的晓丝关注了科研通微信公众号
11秒前
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233