Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes

生物 表型 计算生物学 进化生物学 遗传学 基因
作者
Deborah Kunkel,Peter Sørensen,Vijay Shankar,Fabio Morgante
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:21 (1): e1011519-e1011519
标识
DOI:10.1371/journal.pgen.1011519
摘要

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash , a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss , an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in the UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data set has smaller sample size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜看财经发布了新的文献求助10
刚刚
刚刚
1秒前
孤独丹秋发布了新的文献求助10
1秒前
zxh发布了新的文献求助10
2秒前
2秒前
汉堡包应助lm0703采纳,获得10
2秒前
3秒前
ines发布了新的文献求助30
3秒前
3秒前
tanyunjuan完成签到,获得积分10
3秒前
4秒前
ingxiaiu完成签到,获得积分10
4秒前
千影完成签到,获得积分10
4秒前
舒心青旋发布了新的文献求助10
4秒前
Lucas应助小犬采纳,获得10
5秒前
暴发户发布了新的文献求助30
5秒前
zhao发布了新的文献求助10
5秒前
扶苏发布了新的文献求助10
5秒前
6秒前
Kraghc发布了新的文献求助50
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
小二郎应助陈梦鼠采纳,获得10
6秒前
7秒前
7秒前
捏捏捏发布了新的文献求助10
7秒前
7秒前
qiuwuji发布了新的文献求助10
7秒前
ming完成签到,获得积分10
7秒前
跳跃凡完成签到,获得积分20
8秒前
8秒前
8秒前
自由的冰夏完成签到,获得积分10
9秒前
9秒前
9秒前
2224536发布了新的文献求助10
10秒前
超级水壶发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助悦耳醉香采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688