Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes

生物 表型 计算生物学 进化生物学 遗传学 基因
作者
Deborah Kunkel,Peter Sørensen,Vijay Shankar,Fabio Morgante
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:21 (1): e1011519-e1011519
标识
DOI:10.1371/journal.pgen.1011519
摘要

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash , a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss , an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in the UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data set has smaller sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sugar完成签到,获得积分10
刚刚
下雨天完成签到,获得积分10
1秒前
古德猫宁完成签到,获得积分10
1秒前
1秒前
daisies应助yana采纳,获得20
1秒前
何佳易关注了科研通微信公众号
1秒前
cdgbdfbsfdvsd完成签到,获得积分10
2秒前
zero完成签到,获得积分10
3秒前
类囊体薄膜完成签到,获得积分10
3秒前
4秒前
sparks完成签到,获得积分10
4秒前
4秒前
Yuanyuan发布了新的文献求助30
5秒前
brier0218完成签到,获得积分10
5秒前
5秒前
云云完成签到,获得积分10
5秒前
心灵美复天完成签到,获得积分10
5秒前
chenyq1177完成签到 ,获得积分10
6秒前
哦豁拐咯完成签到,获得积分10
7秒前
毕业大吉完成签到,获得积分20
7秒前
糖丸完成签到,获得积分10
7秒前
颖仔完成签到,获得积分10
8秒前
doin完成签到,获得积分10
8秒前
发一篇sci完成签到 ,获得积分10
8秒前
老实皮皮虾完成签到,获得积分10
9秒前
慕青应助石头采纳,获得10
10秒前
Kins完成签到,获得积分10
10秒前
清浅发布了新的文献求助20
10秒前
王五发布了新的文献求助10
10秒前
康康米其林完成签到,获得积分10
11秒前
11秒前
王小海111完成签到 ,获得积分10
11秒前
12秒前
A阿澍完成签到,获得积分10
12秒前
淡淡凌翠完成签到,获得积分10
12秒前
科研通AI2S应助FLZLC采纳,获得10
13秒前
anthea完成签到 ,获得积分10
13秒前
元气糖完成签到 ,获得积分10
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118