Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes

生物 表型 计算生物学 进化生物学 遗传学 基因
作者
Deborah Kunkel,Peter Sørensen,Vijay Shankar,Fabio Morgante
出处
期刊:PLOS Genetics 卷期号:21 (1): e1011519-e1011519
标识
DOI:10.1371/journal.pgen.1011519
摘要

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash , a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss , an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in the UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data set has smaller sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
春华秋实发布了新的文献求助10
2秒前
小鱼爱吃肉应助机智向松采纳,获得10
3秒前
3秒前
4秒前
4秒前
彭于晏应助000采纳,获得10
4秒前
太牛的GGB发布了新的文献求助10
4秒前
4秒前
ACY发布了新的文献求助10
4秒前
MiManchi完成签到,获得积分10
5秒前
IMkily完成签到,获得积分10
5秒前
6秒前
所所应助xixi采纳,获得10
6秒前
6秒前
牛马人生发布了新的文献求助10
7秒前
研友_ZrB5aZ完成签到,获得积分10
7秒前
好汉发布了新的文献求助10
7秒前
小仙完成签到,获得积分10
8秒前
liu完成签到,获得积分10
8秒前
娜娜发布了新的文献求助10
8秒前
9秒前
9秒前
leaves发布了新的文献求助10
9秒前
孙小雨发布了新的文献求助10
10秒前
芙芙发布了新的文献求助50
11秒前
研友_VZG7GZ应助淡定星星采纳,获得10
11秒前
11秒前
锦墨人生发布了新的文献求助10
11秒前
12秒前
12秒前
鲤鱼问雁发布了新的文献求助10
12秒前
tyy完成签到,获得积分10
13秒前
852应助改改采纳,获得20
14秒前
qoq发布了新的文献求助10
16秒前
完美世界应助牛马人生采纳,获得10
16秒前
16秒前
优美元枫完成签到,获得积分10
16秒前
xiaoxiao晓完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255