清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

构象异构 成对比较 排名(信息检索) 计算机科学 人工智能 可扩展性 机器学习 化学 分子 数据库 有机化学
作者
Christian Hölzer,Rick Oerder,Stefan Grimme,Jan Hamaekers
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01524
摘要

Conformer ranking is a crucial task for drug discovery, with methods for generating conformers often based on molecular (meta)dynamics or sophisticated sampling techniques. These methods are constrained by the underlying force computation regarding runtime and energy ranking accuracy, limiting their effectiveness for large-scale screening applications. To address these ranking limitations, we introduce ConfRank, a machine learning-based approach that enhances conformer ranking using pairwise training. We demonstrate its performance using GFN-FF-generated conformer ensembles, leveraging the DimeNet++ architecture trained on pairs of 159 760 uncharged organic compounds from the GEOM data set with r2SCAN-3c reference level. Instead of predicting only on single molecules, this approach captures relative energy differences between conformers, leading to a significant improvement of the overall conformational ranking, outperforming GFN-FF and GFN2-xTB. Thereby, the pairwise RMSD of the relative energy difference of two conformers can be reduced from 5.65 to 0.71 kcal mol–1 on the test data set, allowing to correctly identify up to 81% of all lowest lying conformers correctly (GFN-FF: 10%, GFN2-xTB: 47%). The ConfRank approach is cost-effective, allowing for scalable deployment on both CPU and GPU, achieving runtime accelerations by up to 2 orders of magnitude compared to GFN2-xTB. Out-of-sample investigations on CREST-generated conformer ensembles from the QM9 data set and conformers taken from an extended GMTKN55 data set show promising results for the robustness of this approach. Thereby, ranking correlation coefficient such as Spearman can be improved to 0.90 (GFN-FF: 0.39, GFN2-xTB: 0.84) reducing the probability of an incorrect sign flip in pairwise energy comparison from 32 to 7%. On the extended GMTKN55 subsets the pairwise MAD (RMSD) could be reduced on almost all subsets by up to 62% (58%) with an average improvement of 30% (29%). Moreover, an exemplary case study on vancomycin shows similar performance, indicating applicability to larger (bio)molecular structures. Furthermore, we motivate the usage of the pairwise training approach from a theoretical perspective, highlighting that while pairwise training can lead to a decline in single sample prediction of absolute energies for ML models, it significantly enhances conformer ranking performance. The data and models used in this study are available at https://github.com/grimme-lab/confrank.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann完成签到,获得积分10
23秒前
gwbk完成签到,获得积分10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
瘦瘦的枫叶完成签到 ,获得积分10
1分钟前
爱心完成签到 ,获得积分10
1分钟前
汉堡包应助kaka采纳,获得50
3分钟前
英喆完成签到 ,获得积分10
3分钟前
大方的从寒完成签到,获得积分20
3分钟前
3分钟前
3分钟前
fengfenghao完成签到,获得积分10
4分钟前
4分钟前
6分钟前
ZSJ发布了新的文献求助10
6分钟前
7分钟前
哈哈哈发布了新的文献求助10
7分钟前
7分钟前
kaka发布了新的文献求助50
7分钟前
小刘爱读文献完成签到 ,获得积分10
8分钟前
852应助科研通管家采纳,获得10
9分钟前
宇文非笑完成签到 ,获得积分10
10分钟前
mito完成签到,获得积分10
11分钟前
打打应助接近透明的灰采纳,获得20
13分钟前
13分钟前
13分钟前
刘天宇完成签到 ,获得积分10
14分钟前
senli2018发布了新的文献求助10
14分钟前
Sandy完成签到 ,获得积分10
14分钟前
Daniel完成签到,获得积分10
15分钟前
和谐续完成签到 ,获得积分10
15分钟前
Woke完成签到 ,获得积分10
17分钟前
去去去去发布了新的文献求助30
17分钟前
科研通AI2S应助去去去去采纳,获得10
17分钟前
fuueer完成签到 ,获得积分10
18分钟前
深情安青应助诚心的砖头采纳,获得10
18分钟前
喜羊羊完成签到,获得积分10
19分钟前
19分钟前
诚心的砖头完成签到,获得积分10
19分钟前
Leofz_KF完成签到,获得积分10
19分钟前
19分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261573
求助须知:如何正确求助?哪些是违规求助? 2902454
关于积分的说明 8319719
捐赠科研通 2572266
什么是DOI,文献DOI怎么找? 1397536
科研通“疑难数据库(出版商)”最低求助积分说明 653809
邀请新用户注册赠送积分活动 632269