亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training

构象异构 成对比较 排名(信息检索) 计算机科学 人工智能 可扩展性 机器学习 化学 分子 数据库 有机化学
作者
Christian Hölzer,Rick Oerder,Stefan Grimme,Jan Hamaekers
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01524
摘要

Conformer ranking is a crucial task for drug discovery, with methods for generating conformers often based on molecular (meta)dynamics or sophisticated sampling techniques. These methods are constrained by the underlying force computation regarding runtime and energy ranking accuracy, limiting their effectiveness for large-scale screening applications. To address these ranking limitations, we introduce ConfRank, a machine learning-based approach that enhances conformer ranking using pairwise training. We demonstrate its performance using GFN-FF-generated conformer ensembles, leveraging the DimeNet++ architecture trained on pairs of 159 760 uncharged organic compounds from the GEOM data set with r2SCAN-3c reference level. Instead of predicting only on single molecules, this approach captures relative energy differences between conformers, leading to a significant improvement of the overall conformational ranking, outperforming GFN-FF and GFN2-xTB. Thereby, the pairwise RMSD of the relative energy difference of two conformers can be reduced from 5.65 to 0.71 kcal mol–1 on the test data set, allowing to correctly identify up to 81% of all lowest lying conformers correctly (GFN-FF: 10%, GFN2-xTB: 47%). The ConfRank approach is cost-effective, allowing for scalable deployment on both CPU and GPU, achieving runtime accelerations by up to 2 orders of magnitude compared to GFN2-xTB. Out-of-sample investigations on CREST-generated conformer ensembles from the QM9 data set and conformers taken from an extended GMTKN55 data set show promising results for the robustness of this approach. Thereby, ranking correlation coefficient such as Spearman can be improved to 0.90 (GFN-FF: 0.39, GFN2-xTB: 0.84) reducing the probability of an incorrect sign flip in pairwise energy comparison from 32 to 7%. On the extended GMTKN55 subsets the pairwise MAD (RMSD) could be reduced on almost all subsets by up to 62% (58%) with an average improvement of 30% (29%). Moreover, an exemplary case study on vancomycin shows similar performance, indicating applicability to larger (bio)molecular structures. Furthermore, we motivate the usage of the pairwise training approach from a theoretical perspective, highlighting that while pairwise training can lead to a decline in single sample prediction of absolute energies for ML models, it significantly enhances conformer ranking performance. The data and models used in this study are available at https://github.com/grimme-lab/confrank.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助RAIN采纳,获得10
刚刚
碳酸芙兰完成签到,获得积分10
6秒前
8秒前
量子星尘发布了新的文献求助10
15秒前
23秒前
毅毅发布了新的文献求助30
26秒前
51秒前
毅毅完成签到,获得积分10
59秒前
清爽乐菱应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
Rondab应助firesquall采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CMY发布了新的文献求助10
1分钟前
杨涵完成签到 ,获得积分10
1分钟前
2分钟前
RAIN发布了新的文献求助10
2分钟前
2分钟前
海绵宝宝抓水母完成签到,获得积分10
2分钟前
平淡的快乐完成签到,获得积分10
2分钟前
JamesPei应助平淡的快乐采纳,获得10
2分钟前
在水一方应助CMY采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
3分钟前
CMY发布了新的文献求助10
3分钟前
姜忆霜完成签到 ,获得积分10
3分钟前
小蘑菇应助葛力采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
彩色的紫丝完成签到 ,获得积分10
4分钟前
fangyifang完成签到,获得积分10
4分钟前
xxx完成签到,获得积分20
4分钟前
4分钟前
4分钟前
xxx发布了新的文献求助20
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188