Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
媛宝&硕宝发布了新的文献求助30
2秒前
2秒前
2秒前
墨aizhan发布了新的文献求助10
3秒前
4秒前
毛123发布了新的文献求助10
5秒前
HouShipeng发布了新的文献求助20
6秒前
科研通AI2S应助俊逸的汲采纳,获得10
7秒前
7秒前
独特的紫蓝应助刘晶晶采纳,获得10
7秒前
洛敏夕5743发布了新的文献求助10
8秒前
10秒前
Owen应助xiamovivi采纳,获得10
10秒前
简一完成签到 ,获得积分10
12秒前
愉快的楷瑞完成签到,获得积分10
13秒前
123完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
于世不凡完成签到,获得积分10
17秒前
俊逸的汲完成签到,获得积分10
17秒前
烟花应助PUTIDAXIAN采纳,获得10
18秒前
搜集达人应助October采纳,获得10
19秒前
无花果应助璟晔采纳,获得10
20秒前
20秒前
20秒前
俊逸的汲发布了新的文献求助10
20秒前
kiki完成签到,获得积分10
23秒前
23秒前
会飞的蜗牛完成签到,获得积分10
23秒前
shuangma完成签到,获得积分10
23秒前
光亮的冰薇完成签到 ,获得积分10
24秒前
25秒前
简单问儿发布了新的文献求助10
25秒前
Hayat应助于世不凡采纳,获得20
25秒前
26秒前
大模型应助墨aizhan采纳,获得10
26秒前
26秒前
Hello应助纪亦瑶采纳,获得10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258334
求助须知:如何正确求助?哪些是违规求助? 2900116
关于积分的说明 8309137
捐赠科研通 2569374
什么是DOI,文献DOI怎么找? 1395671
科研通“疑难数据库(出版商)”最低求助积分说明 653188
邀请新用户注册赠送积分活动 631121