Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
august发布了新的文献求助10
刚刚
iccv完成签到 ,获得积分10
刚刚
ccm应助倪妮采纳,获得10
1秒前
FXH发布了新的文献求助20
1秒前
2秒前
更上一层楼完成签到,获得积分10
2秒前
4秒前
4秒前
青塘龙仔发布了新的文献求助10
6秒前
丘比特应助minsu采纳,获得10
6秒前
思源应助UGO采纳,获得10
7秒前
热舞特完成签到,获得积分10
7秒前
7秒前
Ava应助august采纳,获得10
7秒前
烂漫的访天完成签到 ,获得积分10
7秒前
飞雨听澜完成签到,获得积分10
8秒前
NN应助wrx采纳,获得10
9秒前
9秒前
剑来发布了新的文献求助10
9秒前
9秒前
君回发布了新的文献求助10
9秒前
9秒前
我是老大应助666采纳,获得10
9秒前
du30发布了新的文献求助10
11秒前
Owen应助热情的珍采纳,获得10
12秒前
化身孤岛的鲸完成签到 ,获得积分10
13秒前
yiyi完成签到 ,获得积分10
13秒前
hxxcyb发布了新的文献求助10
13秒前
肚子藤完成签到,获得积分10
13秒前
我我发布了新的文献求助10
14秒前
科研强发布了新的文献求助10
14秒前
15秒前
lee完成签到,获得积分10
15秒前
赫连涵柏完成签到,获得积分10
16秒前
徐凌凤发布了新的文献求助10
16秒前
哩蒜呐发布了新的文献求助10
18秒前
打打应助wenbin采纳,获得10
19秒前
爆米花应助Jimmy采纳,获得10
19秒前
莉莉丝完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259489
求助须知:如何正确求助?哪些是违规求助? 4421116
关于积分的说明 13761878
捐赠科研通 4294896
什么是DOI,文献DOI怎么找? 2356644
邀请新用户注册赠送积分活动 1353069
关于科研通互助平台的介绍 1314071