Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yunlong完成签到 ,获得积分10
刚刚
dahuihui完成签到,获得积分10
刚刚
孙新然发布了新的文献求助10
刚刚
LDD完成签到,获得积分10
刚刚
蔡大鲸完成签到,获得积分10
1秒前
瑞少完成签到,获得积分10
1秒前
孤独的远山完成签到,获得积分10
1秒前
silin发布了新的文献求助10
1秒前
2秒前
2秒前
qin202569完成签到,获得积分10
2秒前
邹益春发布了新的文献求助10
2秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
ly完成签到,获得积分10
4秒前
alvin完成签到,获得积分10
4秒前
Z1026完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
万能图书馆应助botion采纳,获得10
4秒前
舒心健柏完成签到,获得积分10
5秒前
5秒前
李可乐发布了新的文献求助10
5秒前
科研辣椒完成签到,获得积分10
5秒前
鳗鱼衣完成签到 ,获得积分10
5秒前
luyunxing完成签到,获得积分10
5秒前
5秒前
zxt完成签到,获得积分10
5秒前
科研通AI6应助孤独的猎手采纳,获得10
6秒前
Yummy完成签到,获得积分10
7秒前
Annnnnn完成签到,获得积分10
7秒前
echo完成签到,获得积分10
7秒前
yibaozhangfa完成签到,获得积分10
9秒前
11发布了新的文献求助30
9秒前
肝不动的牛马完成签到,获得积分10
9秒前
ding应助ruqinmq采纳,获得10
9秒前
桐桐应助Kleen采纳,获得10
9秒前
maoyi发布了新的文献求助10
9秒前
小luc发布了新的文献求助10
10秒前
李瑶函完成签到,获得积分10
10秒前
AN完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977