Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aq22完成签到 ,获得积分10
刚刚
秋沐完成签到,获得积分10
刚刚
刚刚
梦璃完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
情怀应助xueshu采纳,获得10
1秒前
冷静伟诚完成签到,获得积分10
1秒前
臭皮匠发布了新的文献求助10
2秒前
科研通AI6应助12采纳,获得10
2秒前
Zoey完成签到,获得积分10
2秒前
夏天发布了新的文献求助30
3秒前
zzuzll发布了新的文献求助10
3秒前
5秒前
爱听歌的睫毛膏完成签到 ,获得积分10
5秒前
英姑应助吃生肉的孙尚香采纳,获得10
6秒前
Owen应助李伟龙采纳,获得10
7秒前
7秒前
梁帅哥完成签到,获得积分10
9秒前
Lumos发布了新的文献求助10
10秒前
梦璃发布了新的文献求助10
10秒前
ll发布了新的文献求助10
10秒前
蓝色教室发布了新的文献求助10
10秒前
看看完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
YY完成签到 ,获得积分10
12秒前
隐形曼青应助文静茗茗采纳,获得10
12秒前
包容问雁发布了新的文献求助100
13秒前
李彦完成签到,获得积分10
13秒前
yyx完成签到 ,获得积分10
14秒前
14秒前
15秒前
依小米完成签到 ,获得积分10
15秒前
日照金峰完成签到,获得积分10
15秒前
丹丹子完成签到 ,获得积分10
16秒前
16秒前
dd发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684019
求助须知:如何正确求助?哪些是违规求助? 5034811
关于积分的说明 15183309
捐赠科研通 4843392
什么是DOI,文献DOI怎么找? 2596672
邀请新用户注册赠送积分活动 1549384
关于科研通互助平台的介绍 1507854