亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Bo采纳,获得10
7秒前
14秒前
16秒前
Bo发布了新的文献求助10
21秒前
ssr发布了新的文献求助10
23秒前
25秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
Ming应助科研通管家采纳,获得10
26秒前
Bo完成签到,获得积分10
31秒前
Lee完成签到,获得积分10
44秒前
57秒前
陈冰发布了新的文献求助10
1分钟前
feizao完成签到,获得积分10
1分钟前
丘比特应助陈冰采纳,获得10
1分钟前
nito发布了新的文献求助10
1分钟前
nito完成签到,获得积分10
1分钟前
慕青应助nito采纳,获得10
1分钟前
1分钟前
调皮老头发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
nito发布了新的文献求助10
2分钟前
2分钟前
xx发布了新的文献求助10
3分钟前
3分钟前
可爱的函函应助Yikepp采纳,获得10
3分钟前
Lucas应助xx采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
yuki完成签到 ,获得积分10
3分钟前
nito发布了新的文献求助10
3分钟前
科研通AI6.1应助yukky采纳,获得30
3分钟前
科研通AI6.1应助Emma采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772690
求助须知:如何正确求助?哪些是违规求助? 5601217
关于积分的说明 15429935
捐赠科研通 4905602
什么是DOI,文献DOI怎么找? 2639524
邀请新用户注册赠送积分活动 1587405
关于科研通互助平台的介绍 1542337