Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超人完成签到,获得积分10
刚刚
我是老大应助饶天源采纳,获得10
1秒前
啤酒半斤发布了新的文献求助200
1秒前
3秒前
3秒前
bin发布了新的文献求助100
3秒前
鲤鱼依白完成签到 ,获得积分10
3秒前
领导范儿应助十四吉采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
任贱贱完成签到,获得积分20
6秒前
小马甲应助言木禾采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
简单喀秋莎完成签到,获得积分10
9秒前
9秒前
CodeCraft应助菠萝披萨采纳,获得10
9秒前
风趣绿竹完成签到,获得积分10
10秒前
傲娇的秋莲完成签到,获得积分20
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
小明发布了新的文献求助10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
天天快乐应助科研通管家采纳,获得30
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
无花果应助einspringen采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
yu发布了新的文献求助30
11秒前
11秒前
12秒前
Levan完成签到,获得积分10
12秒前
bamboo应助科研通管家采纳,获得20
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
求助人员应助科研通管家采纳,获得30
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667