Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助钙离子采纳,获得10
刚刚
许思真完成签到,获得积分10
刚刚
Deanna完成签到 ,获得积分10
1秒前
1秒前
1秒前
善学以致用应助医路潜行采纳,获得10
3秒前
hongxing liu发布了新的文献求助10
4秒前
简单小土豆完成签到,获得积分10
5秒前
5秒前
小康学弟发布了新的文献求助10
6秒前
7秒前
我是老大应助Deanna采纳,获得10
7秒前
曾经的慕灵完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助LYY采纳,获得10
7秒前
jiangqin123完成签到 ,获得积分10
8秒前
东方发布了新的文献求助10
8秒前
大喜子完成签到,获得积分10
8秒前
10秒前
10秒前
qing完成签到,获得积分10
11秒前
大喜子发布了新的文献求助10
12秒前
xiaohao完成签到 ,获得积分10
12秒前
CipherSage应助6666采纳,获得10
12秒前
12秒前
小马甲应助hongxing liu采纳,获得10
13秒前
13秒前
13秒前
MiYou完成签到,获得积分10
15秒前
医路潜行发布了新的文献求助10
16秒前
XIAOWANG发布了新的文献求助10
16秒前
奋斗映冬发布了新的文献求助10
16秒前
Eternitymaria发布了新的文献求助10
17秒前
何渡星舟完成签到,获得积分10
17秒前
可靠苞络发布了新的文献求助10
17秒前
yitongyao发布了新的文献求助10
20秒前
科目三应助cat采纳,获得10
21秒前
天亮polar完成签到,获得积分10
22秒前
医路潜行完成签到,获得积分20
22秒前
dachengzi完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498