Plant pest and disease lightweight identification model by fusing tensor features and knowledge distillation

鉴定(生物学) 有害生物分析 张量(固有定义) 计算机科学 人工智能 生物 自然语言处理 植物 数学 纯数学
作者
Xiaoli Zhang,Kun Liang,Yiying Zhang
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fpls.2024.1443815
摘要

Plant pest and disease management is an important factor affecting the yield and quality of crops, and due to the rich variety and the diagnosis process mostly relying on experts' experience, there are problems of low diagnosis efficiency and accuracy. For this, we proposed a Plant pest and Disease Lightweight identification Model by fusing Tensor features and Knowledge distillation (PDLM-TK). First, a Lightweight Residual Blocks based on Spatial Tensor (LRB-ST) is constructed to enhance the perception and extraction of shallow detail features of plant images by introducing spatial tensor. And the depth separable convolution is used to reduce the number of model parameters to improve the diagnosis efficiency. Secondly, a Branch Network Fusion with Graph Convolutional features (BNF-GC) is proposed to realize image super-pixel segmentation by using spanning tree clustering based on pixel features. And the graph convolution neural network is utilized to extract the correlation features to improve the diagnosis accuracy. Finally, we designed a Model Training Strategy based on knowledge Distillation (MTS-KD) to train the pest and disease diagnosis model by building a knowledge migration architecture, which fully balances the accuracy and diagnosis efficiency of the model. The experimental results show that PDLM-TK performs well in three plant pest and disease datasets such as Plant Village, with the highest classification accuracy and F1 score of 96.19% and 94.94%. Moreover, the model execution efficiency performs better compared to lightweight methods such as MobileViT, which can quickly and accurately diagnose plant diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小千应助菠萝采纳,获得10
刚刚
上官若男应助火星上问柳采纳,获得10
刚刚
研友_n0kqxL完成签到,获得积分10
1秒前
gmy发布了新的文献求助10
1秒前
2秒前
民族风发布了新的文献求助10
2秒前
隐形曼青应助星星采纳,获得20
3秒前
3秒前
吃瓜发布了新的文献求助10
3秒前
梓树发布了新的文献求助10
4秒前
屈昭阳完成签到,获得积分10
4秒前
花椒鱼发布了新的文献求助10
4秒前
小马甲应助xin采纳,获得10
4秒前
可爱的函函应助落后成仁采纳,获得10
5秒前
6秒前
6秒前
sss发布了新的文献求助10
7秒前
英俊的铭应助牛溪媛采纳,获得10
8秒前
8秒前
小蘑菇应助cruise采纳,获得10
8秒前
liu完成签到,获得积分10
8秒前
10秒前
10秒前
赘婿应助勒恩梁采纳,获得10
11秒前
坦率的语芙完成签到,获得积分10
11秒前
脑洞疼应助longer采纳,获得10
11秒前
caizhizhao完成签到,获得积分20
12秒前
cach完成签到,获得积分0
12秒前
12秒前
ssskong完成签到,获得积分10
13秒前
Xu完成签到,获得积分10
14秒前
明天发布了新的文献求助20
14秒前
CipherSage应助xvan采纳,获得10
14秒前
15秒前
fksci发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
阿庆完成签到,获得积分10
17秒前
Criminology34应助落后成仁采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172