Orbital hybridization induces fast photoelectron capture by graphene to promote high gain in transition metal dichalcogenide/graphene heterojunctions

石墨烯 异质结 过渡金属 材料科学 纳米技术 光电子学 化学 催化作用 生物化学
作者
Tingbo Zhang,Xinying Gao,Meiling Xu,Caoping Niu,Jingming Shi,Jian Hao,Xianghong Niu,Yinwei Li
出处
期刊:Physical review [American Physical Society]
卷期号:110 (24)
标识
DOI:10.1103/physrevb.110.245401
摘要

Transition metal dichalcogenide/graphene (TMDC/Gr) heterojunction devices exhibit significantly higher photoresponsivity compared to TMDC devices alone, making them promising for optoelectronic applications. However, experiments demonstrated that graphene cannot prolong the photogenerated carrier lifetime of TMDC/Gr heterojunctions and, further, that the high density of sulfur vacancies in TMDCs complicates photogenerated carrier dynamics, leaving the underlying physical mechanism behind the high photoresponsivity unclear. Herein, we investigate photogenerated carrier transfer and recombination of $\mathrm{Mo}{\mathrm{S}}_{2}$/Gr and $\mathrm{W}{\mathrm{S}}_{2}$/Gr heterojunctions through nonadiabatic molecular dynamics simulations. Instead of conventional speculation that sulfur vacancies of TMDCs store photogenerated carriers to enhance optoelectronic performance, we find that the hybridization between defect states of TMDC and Dirac points of graphene induces fast photoelectron transfer from TMDC to graphene, promoting high carrier gain in TMDC/Gr heterojunctions. Fast carrier transfer of heterojunctions derives from the excitation of low-frequency in-plane phonon modes. Meanwhile, graphene does not drastically reduce the photogenerated carrier lifetime of TMDC/Gr heterojunctions. Therefore, the faster photogenerated electrons transfer and long carrier lifetime lead to photogenerated carrier gain, resulting in superior optoelectronic performance of TMDC/Gr heterojunctions. This study provides a comprehensive understanding of photogenerated carrier dynamics in TMDC/Gr heterojunctions, laying the foundation for design of high-performance TMDC optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
骆風发布了新的文献求助10
刚刚
1秒前
cocu117发布了新的文献求助10
2秒前
2秒前
2秒前
yuan完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
13完成签到,获得积分20
3秒前
1111发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
思源应助哈哈哈采纳,获得10
5秒前
hlxhlx发布了新的文献求助20
5秒前
5秒前
兴奋的小笼包完成签到,获得积分10
5秒前
黎书禾完成签到,获得积分10
7秒前
于梦强发布了新的文献求助10
8秒前
wysy应助祝莞采纳,获得10
8秒前
chunfneg完成签到,获得积分20
8秒前
9秒前
kangyan完成签到,获得积分10
10秒前
floating发布了新的文献求助10
10秒前
iNk应助YYY采纳,获得20
11秒前
科目三应助shu采纳,获得10
11秒前
飞飞wolf发布了新的文献求助10
11秒前
甜甜穆完成签到,获得积分10
11秒前
halo完成签到,获得积分10
12秒前
夏天关注了科研通微信公众号
12秒前
英俊的铭应助hlxhlx采纳,获得10
12秒前
Zxffei完成签到,获得积分10
12秒前
成就的寒天完成签到,获得积分20
12秒前
13秒前
奋斗的板栗完成签到,获得积分10
14秒前
快乐滑板应助生动的翠容采纳,获得10
14秒前
白羊完成签到,获得积分10
14秒前
棋士发布了新的文献求助10
15秒前
骆風完成签到,获得积分10
16秒前
Tourist应助棒打嘤嘤怪采纳,获得10
16秒前
张远幸发布了新的文献求助10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102