Multimodal multiphasic pre-operative image-based deep-learning predicts hepatocellular carcinoma outcomes after curative surgery

肝细胞癌 队列 医学 接收机工作特性 放射科 内科学
作者
Rex Wan‐Hin Hui,K.W. Chiu,I-Cheng Lee,Chenlu Wang,Ho Ming Cheng,Jian‐Liang Lu,Xianhua Mao,Sarah N. Yu,Lok-Ka Lam,Lung‐Yi Mak,Tan To Cheung,Nam-Hung Chia,Chin‐Cheung Cheung,W. Kan,Tiffany Wong,Albert C. Y. Chan,Yi-Hsiang Huang,Man‐Fung Yuen,Philip L. H. Yu,Wai‐Kay Seto
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/hep.0000000000001180
摘要

Background: Hepatocellular carcinoma (HCC) recurrence frequently occurs after curative surgery. Histological microvascular-invasion (MVI) predicts recurrence but cannot provide pre-operative prognostication, whereas clinical prediction scores have variable performances. Methods: Recurr-NET, a multimodal multiphasic residual-network random survival forest deep-learning model incorporating pre-operative CT and clinical parameters, was developed to predict HCC recurrence. Pre-operative triphasic CT scans were retrieved from patients with resected histology-confirmed HCC from four centers in Hong Kong (Internal-cohort). The internal-cohort was randomly divided in an 8:2 ratio into training and internal-validation. External-testing was performed in an independent cohort from Taiwan. Results: Among 1231 patients (Age 62.4, 83.1% male, 86.8% viral hepatitis, median follow-up 65.1 months), cumulative HCC recurrence at years 2 and 5 were 41.8% and 56.4% respectively. Recurr-NET achieved excellent accuracy in predicting recurrence from years 1-5 (Internal cohort AUROC 0.770-0.857; External AUROC 0.758-0.798), significantly out-performing MVI (Internal AUROC 0.518-0.590; External AUROC 0.557-0.615) and multiple clinical risk scores (ERASL-PRE, ERASL-POST, DFT, and Shim scores) (Internal AUROC 0.523-0.587, External AUROC: 0.524-0.620) respectively (all p <0.001). Recurr-NET was superior to MVI in stratifying recurrence risks at year 2 (Internal: 72.5% vs. 50.0% in MVI; External: 65.3% vs. 46.6% in MVI) and year 5 (Internal: 86.4% vs. 62.5% in MVI; External: 81.4% vs. 63.8% in MVI) (all p <0.001). Recurr-NET was also superior to MVI in stratifying liver-related and all-cause mortality (all p <0.001). The performance of Recurr-NET remained robust in subgroup analyses. Conclusion: Recurr-NET accurately predicted HCC recurrence, out-performing MVI and clinical prediction scores respectively, highlighting its potential in pre-operative prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌半山完成签到,获得积分10
1秒前
caojiarong完成签到,获得积分10
5秒前
小海绵完成签到,获得积分10
8秒前
caojiarong发布了新的文献求助10
10秒前
10秒前
巷陌完成签到 ,获得积分10
11秒前
shz8012发布了新的文献求助30
11秒前
12秒前
harvey完成签到,获得积分20
12秒前
失眠的水云完成签到,获得积分10
13秒前
14秒前
huohuo完成签到,获得积分10
14秒前
WangXiaoze发布了新的文献求助10
15秒前
17秒前
ran发布了新的文献求助10
17秒前
茗茗关注了科研通微信公众号
17秒前
舒适智宸发布了新的文献求助30
21秒前
小苏完成签到,获得积分10
22秒前
ww完成签到,获得积分20
22秒前
24秒前
shz8012完成签到,获得积分10
25秒前
HYX完成签到,获得积分10
26秒前
猪猪hero发布了新的文献求助10
28秒前
乐乐应助WangXiaoze采纳,获得10
28秒前
研友_VZG7GZ应助ran采纳,获得10
28秒前
燕燕于飞发布了新的文献求助10
29秒前
晨光中完成签到,获得积分10
31秒前
太阳完成签到,获得积分10
32秒前
max完成签到,获得积分10
33秒前
茗茗发布了新的文献求助10
35秒前
35秒前
慕青应助caojiarong采纳,获得10
36秒前
41秒前
猪猪hero应助繁星与北斗采纳,获得10
42秒前
ky完成签到,获得积分10
43秒前
abc完成签到 ,获得积分10
45秒前
Quiller.Wang发布了新的文献求助30
46秒前
QQ关注了科研通微信公众号
47秒前
WangXiaoze发布了新的文献求助10
47秒前
QQ关注了科研通微信公众号
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731