Machine learning‐based identification of general transcriptional predictors for plant disease

丁香假单胞菌 生物 病理系统 机器学习 特征选择 鉴定(生物学) 计算生物学 人工智能 生物逆境 植物免疫 拟南芥 植物抗病性 疾病 特征(语言学) 植物病害 拟南芥 非生物胁迫 计算机科学 基因 遗传学 生物技术 生态学 医学 语言学 哲学 病理 突变体
作者
Jayson Sia,Wei Zhang,Mingxi Cheng,Paul Bogdan,David E. Cook
出处
期刊:New Phytologist [Wiley]
标识
DOI:10.1111/nph.20264
摘要

This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine learning models were trained to predict disease development from early transcriptional responses. Feature selection techniques based on network science and topology were used to train models employing only a fraction of the transcriptome. Machine learning models trained on one pathosystem where then validated by predicting disease development in new pathosystems. The identified feature selection gene sets were enriched for pathways related to biotic, abiotic, and stress responses, though the specific genes involved differed between feature sets. This suggests common immune responses to diverse pathogens that operate via different gene sets. The study demonstrates that machine learning can uncover both established and novel components of the plant's immune response, offering insights into disease resistance mechanisms. These predictive models highlight the potential to advance our understanding of multigenic outcomes in plant immunity and can be further refined for applications in disease prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
1秒前
Tamarin应助科研通管家采纳,获得10
1秒前
ponymjj应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
盛夏完成签到,获得积分10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
gmugyy发布了新的文献求助10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
追寻南晴应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
Cactus应助谷粱紫槐采纳,获得10
3秒前
高挑的以晴完成签到,获得积分20
4秒前
力量完成签到,获得积分20
4秒前
5秒前
赵宇宙完成签到,获得积分10
5秒前
hahahaha完成签到,获得积分10
6秒前
7秒前
zz发布了新的文献求助10
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814