水热碳化
生物利用度
肥料
磷
化学
环境化学
分馏
粪便管理
农学
碳化
吸附
生物信息学
生物
有机化学
作者
Mohammad Nazrul Islam,Imran Hussian Mahdy,Lide Chen,Sarah Wu,Brian He
标识
DOI:10.1080/09593330.2024.2430802
摘要
Dairy manure, a significant source of phosphorus (P), can potentially cause environmental risk due to P runoff when dairy manure is directly applied to cropland. Thus, there is an increasing interest in mitigating P loss from manure prior to land applications. This study aimed to investigate the potential of hydrochar produced by hydrothermal carbonization (HTC) for P recycling from dairy manure with and without the addition of CaO, focusing on the plant bioavailability, stabilization, and transformation of P in the resultant hydrochar. Hydrochar was prepared under different temperatures (180–240°C). The effect of CaO addition (0–10% of raw manure on dry wt. basis) was also evaluated at 220°C. Results showed that water-soluble P (WSP), a key indicator of P runoff loss, was significantly reduced in hydrochar, particularly with CaO addition. In addition, the plant available P in hydrochar increased with HTC temperature increase till 220°C, which accounted for ∼90% of total P content, then decreased with temperatures higher than 220°C. The addition of CaO slightly reduced plant bioavailability when compared to hydrochar produced at 220°C without additive. The P fractionation and speciation analyses indicated the transformation of P into Ca-associated apatite P. Hydrochar produced at 220°C with 10% CaO addition resulted in a high P recovery (∼85%) and a reduced runoff risk by 97%. The results demonstrate the efficacy of P recycling through hydrochar produced from dairy manure through HTC, which offers a sustainable approach to managing dairy waste while mitigating the potential environmental risks of P runoff.
科研通智能强力驱动
Strongly Powered by AbleSci AI