已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence–Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms

医学 心力衰竭 内科学 队列 前瞻性队列研究 弗雷明翰风险评分 人口 心脏病学 疾病 环境卫生
作者
Lovedeep S Dhingra,Arya Aminorroaya,Aline F Pedroso,Akshay Khunte,Veer Sangha,Daniel McIntyre,Clara K Chow,Folkert W. Asselbergs,Luísa Campos Caldeira Brant,Sandhi Maria Barreto,Antônio Luiz Pinho Ribeiro,Harlan M. Krumholz,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:JAMA Cardiology [American Medical Association]
标识
DOI:10.1001/jamacardio.2025.0492
摘要

Importance Despite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) may enable large-scale community-based risk assessment. Objective To evaluate whether an artificial intelligence (AI) algorithm can predict HF risk from noisy single-lead ECGs. Design, Setting, and Participants A retrospective cohort study of individuals without HF at baseline was conducted among individuals with conventionally obtained outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of the UK Biobank (UKB) and the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Data analysis was performed from September 2023 to February 2025. Exposure AI-ECG–defined risk of left ventricular systolic dysfunction (LVSD). Main Outcomes and Measures Among individuals with ECGs, lead I ECGs were isolated and a noise-adapted AI-ECG model (to simulate ECG signals from wearable devices) trained to identify LVSD was deployed. The association of the model probability with new-onset HF, defined as the first HF hospitalization, was evaluated. The discrimination of AI-ECG was compared against 2 risk scores for new-onset HF (Pooled Cohort Equations to Prevent Heart Failure [PCP-HF] and Predicting Risk of Cardiovascular Disease Events [PREVENT] equations) using the Harrel C statistic, integrated discrimination improvement, and net reclassification improvement. Results There were 192 667 YNHHS patients (median [IQR] age, 56 [41-69] years; 111 181 women [57.7%]), 42 141 UKB participants (median [IQR] age, 65 [59-71] years; 21 795 women [51.7%]), and 13 454 ELSA-Brasil participants (median [IQR] age, 51 [45-58] years; 7348 women [54.6%]) with baseline ECGs. A total of 3697 (1.9%) developed HF in YNHHS over a median (IQR) of 4.6 (2.8-6.6) years, 46 (0.1%) in UKB over a median (IQR) of 3.1 (2.1-4.5) years, and 31 (0.2%) in ELSA-Brasil over a median (IQR) of 4.2 (3.7-4.5) years. A positive AI-ECG screening result for LVSD was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability was associated with a 27% to 65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG’s discrimination for new-onset HF was 0.723 (95% CI, 0.694-0.752) in YNHHS, 0.736 (95% CI, 0.606-0.867) in UKB, and 0.828 (95% CI, 0.692-0.964) in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions alongside PCP-HF and PREVENT equations was associated with a higher Harrel C statistic (difference in addition to PCP-HF, 0.080-0.107; difference in addition to PREVENT, 0.069-0.094). AI-ECG had an integrated discrimination improvement of 0.091 to 0.205 vs PCP-HF and 0.068 to 0.192 vs PREVENT; it had a net reclassification improvement of 18.2% to 47.2% vs PCP-HF and 11.8% to 47.5% vs PREVENT. Conclusions and Relevance Across multinational cohorts, a noise-adapted AI-ECG model estimated HF risk using lead I ECGs, suggesting a potential HF risk-stratification strategy requiring prospective study using wearable and portable ECG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongyh10完成签到,获得积分10
7秒前
张磊完成签到 ,获得积分10
8秒前
小田心完成签到 ,获得积分10
9秒前
NexusExplorer应助fl采纳,获得10
12秒前
友好凌柏完成签到 ,获得积分10
14秒前
14秒前
dengdengdeng完成签到,获得积分10
17秒前
樱木没有花道完成签到 ,获得积分10
19秒前
20秒前
Charles完成签到,获得积分10
21秒前
dengdengdeng发布了新的文献求助30
22秒前
22秒前
淡水痕完成签到,获得积分10
22秒前
谷子完成签到 ,获得积分10
25秒前
fl发布了新的文献求助10
25秒前
Wang_JN完成签到 ,获得积分10
27秒前
606完成签到,获得积分10
27秒前
科研学术完成签到,获得积分10
27秒前
Kunning完成签到 ,获得积分10
28秒前
28秒前
Janus完成签到,获得积分10
28秒前
qiu完成签到,获得积分10
29秒前
香蕉觅云应助lili-采纳,获得10
31秒前
小楠完成签到,获得积分10
31秒前
8是消毒液完成签到,获得积分20
31秒前
尤水绿应助606采纳,获得20
32秒前
whyzz完成签到 ,获得积分10
34秒前
SciGPT应助陀思妥耶夫斯基采纳,获得10
34秒前
烟花应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
Ava应助科研通管家采纳,获得10
40秒前
思源应助8是消毒液采纳,获得10
40秒前
充电宝应助科研通管家采纳,获得10
40秒前
有人喜欢蓝完成签到 ,获得积分10
40秒前
完美世界应助傲娇的觅翠采纳,获得10
40秒前
在水一方应助Hayward采纳,获得10
41秒前
三九发布了新的文献求助100
41秒前
bkagyin应助梁山第一好汉采纳,获得10
41秒前
skbkbe完成签到 ,获得积分10
46秒前
钮祜禄萱完成签到 ,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773598
求助须知:如何正确求助?哪些是违规求助? 3319118
关于积分的说明 10193082
捐赠科研通 3033727
什么是DOI,文献DOI怎么找? 1664634
邀请新用户注册赠送积分活动 796263
科研通“疑难数据库(出版商)”最低求助积分说明 757390