Molecularly Thin Nanosheet Films as Water Dissociation Reaction Catalysts Enhanced by Strong Electric Fields in Bipolar Membranes

化学 纳米片 离解(化学) 催化作用 电场 化学工程 纳米技术 光化学 有机化学 生物化学 物理 材料科学 量子力学 工程类
作者
Eisuke Yamamoto,Tianyue Gao,Langqiu Xiao,Kelly Kopera,Sariah Marth,Heemin Park,Chulsung Bae,Minoru Osada,Thomas E. Mallouk
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c17830
摘要

Bipolar membranes (BPMs) are interesting materials for the development of next-generation electrochemical energy conversion and separations processes. One of the key challenges in optimizing BPM performance is enhancing the rate of the water dissociation (WD) reaction. While electric field effects, specifically the second Wien effect, have been demonstrated to enhance the rate of WD reaction, making BPMs with low overpotentials for WD using primary electric field effects has been difficult to achieve. In this study, we constructed an abrupt interfacial structure between the anion exchange membrane (AEM) and cation exchange membrane (CEM) of BPMs to maximize the intensity of local electric field. A film of densely tiled, molecularly thin titanium oxide nanosheets was deposited as the interfacial layer to create an abrupt interface for studying extreme electric field effects. Although BPMs with titanium oxide nanosheet films exhibited higher WD reaction resistance compared to thicker catalyst layers composed of nanoparticles at low current density, they showed superior performance at higher current densities, where strong electric fields were present, and an apparent WD overpotential of 0.25 V at 300 mA cm-2 was extracted from electrochemical impedance measurements. These results highlight the potential of optimizing BPM performance by maximizing the second Wien effect through the utilization of two-dimensionally assembled nanosheet films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助研友_ZGAwaL采纳,获得10
刚刚
刚刚
东方树叶完成签到,获得积分10
刚刚
TALE完成签到,获得积分10
1秒前
junjiang发布了新的文献求助10
1秒前
1秒前
1秒前
大个应助kin采纳,获得10
1秒前
qyhyhn应助小好采纳,获得10
1秒前
2秒前
Hello应助肉肉采纳,获得10
2秒前
暮封完成签到,获得积分10
2秒前
阿布发布了新的文献求助10
2秒前
任老三完成签到,获得积分10
3秒前
3秒前
hhan完成签到,获得积分10
4秒前
脑洞疼应助地表飞猪采纳,获得10
4秒前
4秒前
Ulitimax100完成签到,获得积分10
4秒前
4秒前
4秒前
温暖的青荷完成签到,获得积分10
4秒前
5秒前
5秒前
Raymondhu完成签到,获得积分10
6秒前
归尘发布了新的文献求助30
6秒前
6秒前
6秒前
香蕉觅云应助无限平凡采纳,获得10
7秒前
Rachael完成签到,获得积分10
7秒前
kingwill应助伶俐雪曼采纳,获得20
7秒前
科研通AI5应助积极的天抒采纳,获得10
7秒前
8秒前
小蘑菇应助阳光的电脑采纳,获得10
8秒前
9秒前
10秒前
飞快的一曲完成签到 ,获得积分10
10秒前
无花果应助小花采纳,获得10
10秒前
ant发布了新的文献求助10
10秒前
张张发布了新的文献求助10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4090
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Sea Surface Kinematics From Near-Nadir Radar Measurements 800
J'AI COMBATTU POUR MAO // ANNA WANG 660
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3751560
求助须知:如何正确求助?哪些是违规求助? 3295152
关于积分的说明 10089286
捐赠科研通 3010300
什么是DOI,文献DOI怎么找? 1653118
邀请新用户注册赠送积分活动 788025
科研通“疑难数据库(出版商)”最低求助积分说明 752502