False hope of a single generalisable AI sepsis prediction model: bias and proposed mitigation strategies for improving performance based on a retrospective multisite cohort study

医学 败血症 回顾性队列研究 基线(sea) 急诊医学 急诊科 预测建模 队列 内科学 机器学习 计算机科学 护理部 海洋学 地质学
作者
Rudolf J Schnetler,Anton van der Vegt,Vikrant R Kalke,Paul Lane,Ian Scott
出处
期刊:BMJ Quality & Safety [BMJ]
卷期号:: bmjqs-018328
标识
DOI:10.1136/bmjqs-2024-018328
摘要

Objective To identify bias in using a single machine learning (ML) sepsis prediction model across multiple hospitals and care locations; evaluate the impact of six different bias mitigation strategies and propose a generic modelling approach for developing best-performing models. Methods We developed a baseline ML model to predict sepsis using retrospective data on patients in emergency departments (EDs) and wards across nine hospitals. We set model sensitivity at 70% and determined the number of alerts required to be evaluated (number needed to evaluate (NNE), 95% CI) for each case of true sepsis and the number of hours between the first alert and timestamped outcomes meeting sepsis-3 reference criteria (HTS3). Six bias mitigation models were compared with the baseline model for impact on NNE and HTS3. Results Across 969 292 admissions, mean NNE for the baseline model was significantly lower for EDs (6.1 patients, 95% CI 6 to 6.2) than for wards (7.5 patients, 95% CI 7.4 to 7.5). Across all sites, median HTS3 was 20 hours (20–21) for wards vs 5 (5–5) for EDs. Bias mitigation models significantly impacted NNE but not HTS3. Compared with the baseline model, the best-performing models for NNE with reduced interhospital variance were those trained separately on data from ED patients or from ward patients across all sites. These models generated the lowest NNE results for all care locations in seven of nine hospitals. Conclusions Implementing a single sepsis prediction model across all sites and care locations within multihospital systems may be unacceptable given large variances in NNE across multiple sites. Bias mitigation methods can identify models demonstrating improved performance across most sites in reducing alert burden but with no impact on the length of the prediction window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默无闻完成签到,获得积分10
9秒前
mzrrong完成签到 ,获得积分10
11秒前
余味应助spc采纳,获得10
12秒前
13秒前
皮皮完成签到 ,获得积分10
13秒前
18秒前
常常完成签到,获得积分10
19秒前
余味应助风华正茂采纳,获得10
20秒前
car子完成签到 ,获得积分10
20秒前
cdercder应助科研通管家采纳,获得10
22秒前
cdercder应助科研通管家采纳,获得10
22秒前
我就想看看文献完成签到 ,获得积分10
23秒前
汉堡包应助xgx984采纳,获得10
24秒前
王春琰完成签到 ,获得积分10
27秒前
单薄乐珍完成签到 ,获得积分10
29秒前
神秘玩家完成签到 ,获得积分10
29秒前
xuan完成签到,获得积分10
32秒前
33秒前
余味应助glacier采纳,获得10
35秒前
冰释之川完成签到 ,获得积分0
36秒前
wanci应助踏实的幻姬采纳,获得10
37秒前
duan完成签到,获得积分10
40秒前
毅力鸟完成签到,获得积分10
40秒前
zodiac完成签到,获得积分0
46秒前
在水一方应助空白采纳,获得10
47秒前
妙手回春板蓝根完成签到,获得积分10
51秒前
小绵羊完成签到,获得积分20
54秒前
56秒前
小人物完成签到 ,获得积分10
59秒前
59秒前
conanyangqun完成签到,获得积分10
1分钟前
娜娜完成签到,获得积分10
1分钟前
空白发布了新的文献求助10
1分钟前
等待谷南完成签到,获得积分10
1分钟前
貔貅完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
CH完成签到,获得积分10
1分钟前
行云流水完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758260
求助须知:如何正确求助?哪些是违规求助? 3301123
关于积分的说明 10116523
捐赠科研通 3015595
什么是DOI,文献DOI怎么找? 1656219
邀请新用户注册赠送积分活动 790250
科研通“疑难数据库(出版商)”最低求助积分说明 753766