DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis

变压器 计算机科学 人工智能 基础(证据) 图像(数学) 计算机视觉 模式识别(心理学) 工程类 电气工程 电压 历史 考古
作者
Rizhi Ding,Hui Lü,Manhua Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3551514
摘要

Deep learning models have been widely investigated for computing and analyzing brain images across various downstream tasks such as disease diagnosis and age regression. Most existing models are tailored for specific tasks and diseases, posing a challenge in developing a foundation model for diverse tasks. This paper proposes a Dense Transformer Foundation Model with Mixture of Experts (DenseFormer-MoE), which integrates dense convolutional network, Vision Transformer and Mixture of Experts (MoE) to progressively learn and consolidate local and global features from T1-weighted magnetic resonance images (sMRI) for multiple tasks including diagnosing multiple brain diseases and predicting brain age. First, a foundation model is built by combining the vision Transformer with Densenet, which are pre-trained with Masked Autoencoder and self-supervised learning to enhance the generalization of feature representations. Then, to mitigate optimization conflicts in multi-task learning, MoE is designed to dynamically select the most appropriate experts for each task. Finally, our method is evaluated on multiple renowned brain imaging datasets including UK Biobank (UKB), Alzheimer's Disease Neuroimaging Initiative (ADNI), and Parkinson's Progression Markers Initiative (PPMI). Experimental results and comparison demonstrate that our method achieves promising performances for prediction of brain age and diagnosis of brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助naturehome采纳,获得10
刚刚
香蕉觅云应助Ww采纳,获得10
刚刚
JinghaoLi完成签到 ,获得积分10
1秒前
小马甲应助潘多拉采纳,获得10
1秒前
yu完成签到,获得积分20
2秒前
2秒前
bkagyin应助果果采纳,获得10
4秒前
5秒前
杳鸢应助fluency采纳,获得10
6秒前
6秒前
蜗牛发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
小花生发布了新的文献求助10
9秒前
9秒前
10秒前
王震完成签到,获得积分20
10秒前
11秒前
11秒前
852应助蜗牛采纳,获得10
11秒前
naturehome发布了新的文献求助10
11秒前
S77发布了新的文献求助10
11秒前
共享精神应助WSZXQ采纳,获得10
12秒前
赫若魔发布了新的文献求助10
13秒前
轩轩爱吃鱼完成签到,获得积分10
14秒前
细心的语蓉应助wangrch6采纳,获得50
15秒前
赵十一发布了新的文献求助10
15秒前
15秒前
蔡一完成签到,获得积分10
15秒前
英姑应助pinging采纳,获得10
15秒前
lcy完成签到,获得积分10
15秒前
CodeCraft应助ymf222采纳,获得10
15秒前
完美世界应助SiDi采纳,获得10
16秒前
潘多拉发布了新的文献求助10
17秒前
Ww发布了新的文献求助10
17秒前
渡梦不渡身完成签到,获得积分10
17秒前
李爱国应助王震采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583640
求助须知:如何正确求助?哪些是违规求助? 3152886
关于积分的说明 9494504
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735428
科研通“疑难数据库(出版商)”最低求助积分说明 721228