Core patent forecasting based on graph neural networks with an application in stock markets

芯(光纤) 库存(枪支) 人工神经网络 计算机科学 股票市场 股票市场指数 图形 数据挖掘 机器学习 人工智能 理论计算机科学 电信 工程类 生物 古生物学 机械工程
作者
Songqiao Han,Hailiang Huang,Xiaohong Huang,Yanhong Li,Ruihua Yu,Jun Zhang
出处
期刊:Technology Analysis & Strategic Management [Informa]
卷期号:36 (8): 1680-1694 被引量:10
标识
DOI:10.1080/09537325.2022.2108781
摘要

Core patents are the most important in a specific technological field. Forecasting core patents is crucial to understanding the development of technology trends. Traditional approaches are based on structured/unstructured features or patent relationships. However, most previous methods focused on specific aspects of patents. We propose a novel framework based on the potential relationships to forecast core patents. An event study approach is applied to analyze the short-term impact of core patents' granting events on the stock market. We apply three methods to build framework: a baseline model using traditional features and two graph embeddings. Finally, a classification model is used to predict and compare the effectiveness of different inputs: the traditional patent feature index, and the feature vectors output by the Node2vec and GraphSAGE models. We verify the method with data from the communications and biomedical industries and investigate its application to the stock market. Results demonstrate that the graph-embedding features based on the network are superior to traditional patent features. The graph neural network effectively fuses the two sets of information, and forecasting is improved in all models. And we find that the cumulative abnormal returns from core patents' granting events outweigh those for non-core (ordinary) patents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小宁发布了新的文献求助10
刚刚
木木三发布了新的文献求助10
刚刚
龚涵山完成签到,获得积分10
刚刚
叮叮当发布了新的文献求助30
1秒前
默默熊猫发布了新的文献求助10
1秒前
科研通AI2S应助lingyin采纳,获得10
2秒前
2秒前
2秒前
小马甲应助单复天采纳,获得10
2秒前
2秒前
3秒前
阿六儿发布了新的文献求助10
3秒前
3秒前
动听小小发布了新的文献求助10
3秒前
hldf完成签到,获得积分10
3秒前
超级的溪灵完成签到 ,获得积分10
3秒前
可燃斌完成签到,获得积分10
4秒前
我嘞个豆发布了新的文献求助10
4秒前
4秒前
好好学习的小学生完成签到,获得积分10
4秒前
5秒前
南山鹤完成签到,获得积分10
5秒前
聪明无敌小腚宝完成签到,获得积分10
5秒前
5秒前
tiger发布了新的文献求助10
6秒前
6秒前
任成艳发布了新的文献求助10
6秒前
微醺小王发布了新的文献求助10
7秒前
7秒前
南山鹤发布了新的文献求助10
7秒前
思源应助李盛男采纳,获得10
7秒前
7秒前
7秒前
Rain发布了新的文献求助10
8秒前
8秒前
Kaz完成签到,获得积分10
8秒前
sansronds完成签到,获得积分10
9秒前
9秒前
鲤鱼寒荷发布了新的文献求助10
9秒前
糖糖发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066