清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of a predictive model for peripherally inserted central catheter-related thrombosis in breast cancer patients based on artificial neural network: A prospective cohort study

医学 逻辑回归 接收机工作特性 前瞻性队列研究 血栓形成 乳腺癌 外周穿刺中心静脉导管 人工神经网络 队列 导管 癌症 外科 机器学习 内科学 计算机科学
作者
Jianqin Fu,Weifeng Cai,Bangwei Zeng,Lijuan He,Liqun Bao,Zhaodi Lin,Fang Lin,Wenjuan Hu,Linying Lin,Han-Ying Huang,Suhui Zheng,Liyuan Chen,Wei Zhou,Yanjuan Lin,Fangmeng Fu
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:135: 104341-104341 被引量:11
标识
DOI:10.1016/j.ijnurstu.2022.104341
摘要

Peripherally inserted central catheters have been extensively applied in clinical practices. However, they are associated with an increased risk of thrombosis. To improve patient care, it is critical to timely identify patients at risk of developing peripherally inserted central catheter-related thrombosis. Artificial neural networks have been successfully used in many areas of clinical events prediction and affected clinical decisions and practice.To develop and validate a novel clinical model based on artificial neural network for predicting peripherally inserted central catheter-related thrombosis in breast cancer patients who underwent chemotherapy and determine whether it may improve the prediction performance compared with the logistic regression model.A prospective cohort study.A large general hospital in Fujian Province, China.One thousand eight hundred and forty-four breast cancer patients with peripherally inserted central catheters placement for chemotherapy were eligible for the study.The dataset was divided into a training set (N = 1497) and an independent validation set (N = 347). The synthetic minority oversampling technique (SMOTE) was used to handle the effect of imbalance class. Both the artificial neural network and logistic regression models were then developed on the training set with and without SMOTE, respectively. The performance of each model was evaluated on the validation set using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).Of the 1844 enrolled patients, 256 (13.9%) were diagnosed with peripherally inserted central catheter-related thrombosis. Predictive models were constructed in the training set and assessed in the validation set. Eight factors were selected as input variables to develop the artificial neural network model. Without SMOTE, the artificial neural network model (AUC = 0.725) outperformed the logistic regression model (AUC = 0.670, p = 0.039). SMOTE improved the performance of both two models based on AUC. With the SMOTE sampling, the artificial neural network model performed the best across all evaluated models, the AUC value remained statistically better than that of the logistic regression model (0.742 vs. 0.675, p = 0.004).Artificial neural network model can effectively predict peripherally inserted central catheter-related thrombosis in breast cancer patients receiving chemotherapy. Identifying high-risk groups with peripherally inserted central catheter-related thrombosis can provide close monitoring and an opportune time for intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨言无殇完成签到,获得积分10
24秒前
huvy完成签到 ,获得积分10
36秒前
内向的白玉完成签到 ,获得积分10
3分钟前
3分钟前
翟半仙发布了新的文献求助10
3分钟前
3分钟前
turui完成签到 ,获得积分10
3分钟前
jyy应助晶杰采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
翟半仙发布了新的文献求助20
4分钟前
fuueer完成签到 ,获得积分10
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
上官若男应助LJYang采纳,获得30
5分钟前
翟半仙完成签到,获得积分10
5分钟前
gy完成签到,获得积分10
6分钟前
华仔应助去去去去采纳,获得30
6分钟前
6分钟前
7分钟前
去去去去发布了新的文献求助30
7分钟前
方琼燕完成签到 ,获得积分10
7分钟前
段誉完成签到 ,获得积分10
7分钟前
yanhua完成签到,获得积分20
7分钟前
7分钟前
桐桐应助Mine采纳,获得10
8分钟前
8分钟前
8分钟前
Mine发布了新的文献求助10
8分钟前
8分钟前
Ava应助Mine采纳,获得50
8分钟前
晶杰发布了新的文献求助10
10分钟前
hongxuezhi完成签到,获得积分10
10分钟前
10分钟前
Mine发布了新的文献求助50
10分钟前
晶杰完成签到 ,获得积分10
11分钟前
大个应助雅樱采纳,获得10
11分钟前
Hello应助要减肥的婷冉采纳,获得10
11分钟前
要减肥的婷冉完成签到,获得积分10
11分钟前
12分钟前
Mine完成签到,获得积分10
12分钟前
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335