Development and validation of a predictive model for peripherally inserted central catheter-related thrombosis in breast cancer patients based on artificial neural network: A prospective cohort study

医学 逻辑回归 接收机工作特性 前瞻性队列研究 血栓形成 乳腺癌 外周穿刺中心静脉导管 人工神经网络 队列 导管 癌症 外科 机器学习 内科学 计算机科学
作者
Jianqin Fu,Weifeng Cai,Bangwei Zeng,Lijuan He,Liqun Bao,Zhaodi Lin,Fang Lin,Wenjuan Hu,Linying Lin,Han-Ying Huang,Suhui Zheng,Liyuan Chen,Wei Zhou,Yanjuan Lin,Fangmeng Fu
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:135: 104341-104341 被引量:25
标识
DOI:10.1016/j.ijnurstu.2022.104341
摘要

Peripherally inserted central catheters have been extensively applied in clinical practices. However, they are associated with an increased risk of thrombosis. To improve patient care, it is critical to timely identify patients at risk of developing peripherally inserted central catheter-related thrombosis. Artificial neural networks have been successfully used in many areas of clinical events prediction and affected clinical decisions and practice.To develop and validate a novel clinical model based on artificial neural network for predicting peripherally inserted central catheter-related thrombosis in breast cancer patients who underwent chemotherapy and determine whether it may improve the prediction performance compared with the logistic regression model.A prospective cohort study.A large general hospital in Fujian Province, China.One thousand eight hundred and forty-four breast cancer patients with peripherally inserted central catheters placement for chemotherapy were eligible for the study.The dataset was divided into a training set (N = 1497) and an independent validation set (N = 347). The synthetic minority oversampling technique (SMOTE) was used to handle the effect of imbalance class. Both the artificial neural network and logistic regression models were then developed on the training set with and without SMOTE, respectively. The performance of each model was evaluated on the validation set using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).Of the 1844 enrolled patients, 256 (13.9%) were diagnosed with peripherally inserted central catheter-related thrombosis. Predictive models were constructed in the training set and assessed in the validation set. Eight factors were selected as input variables to develop the artificial neural network model. Without SMOTE, the artificial neural network model (AUC = 0.725) outperformed the logistic regression model (AUC = 0.670, p = 0.039). SMOTE improved the performance of both two models based on AUC. With the SMOTE sampling, the artificial neural network model performed the best across all evaluated models, the AUC value remained statistically better than that of the logistic regression model (0.742 vs. 0.675, p = 0.004).Artificial neural network model can effectively predict peripherally inserted central catheter-related thrombosis in breast cancer patients receiving chemotherapy. Identifying high-risk groups with peripherally inserted central catheter-related thrombosis can provide close monitoring and an opportune time for intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaolei001应助激昂的如柏采纳,获得10
1秒前
5秒前
彭于晏应助张张采纳,获得30
6秒前
天天快乐应助成就的钢笔采纳,获得30
6秒前
NN发布了新的文献求助10
7秒前
9秒前
11秒前
万能图书馆应助喵喵不二采纳,获得10
11秒前
lome发布了新的文献求助10
12秒前
gllc发布了新的文献求助10
12秒前
13秒前
狂野夜绿发布了新的文献求助10
14秒前
14秒前
Oreo完成签到,获得积分10
15秒前
keal完成签到,获得积分10
17秒前
Groot发布了新的文献求助10
19秒前
topteng完成签到,获得积分20
19秒前
21秒前
simon发布了新的文献求助10
21秒前
22秒前
希望天下0贩的0应助NN采纳,获得10
23秒前
白白白戊发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
26秒前
李健应助吃鱼的猫采纳,获得10
27秒前
Orange应助am采纳,获得10
27秒前
量子星尘发布了新的文献求助30
27秒前
28秒前
奔赴发布了新的文献求助10
28秒前
29秒前
咻咻发布了新的文献求助10
29秒前
JokerSun完成签到,获得积分10
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
31秒前
32秒前
wxx完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565