Development and validation of a predictive model for peripherally inserted central catheter-related thrombosis in breast cancer patients based on artificial neural network: A prospective cohort study

医学 逻辑回归 接收机工作特性 前瞻性队列研究 血栓形成 乳腺癌 外周穿刺中心静脉导管 人工神经网络 队列 导管 癌症 外科 机器学习 内科学 计算机科学
作者
Jianqin Fu,Weifeng Cai,Bangwei Zeng,Lijuan He,Liqun Bao,Zhaodi Lin,Fang Lin,Wenjuan Hu,Linying Lin,Hanying Huang,Suhui Zheng,Liyuan Chen,Wei Zhou,Yanjuan Lin,Fangmeng Fu
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:135: 104341-104341 被引量:16
标识
DOI:10.1016/j.ijnurstu.2022.104341
摘要

Peripherally inserted central catheters have been extensively applied in clinical practices. However, they are associated with an increased risk of thrombosis. To improve patient care, it is critical to timely identify patients at risk of developing peripherally inserted central catheter-related thrombosis. Artificial neural networks have been successfully used in many areas of clinical events prediction and affected clinical decisions and practice.To develop and validate a novel clinical model based on artificial neural network for predicting peripherally inserted central catheter-related thrombosis in breast cancer patients who underwent chemotherapy and determine whether it may improve the prediction performance compared with the logistic regression model.A prospective cohort study.A large general hospital in Fujian Province, China.One thousand eight hundred and forty-four breast cancer patients with peripherally inserted central catheters placement for chemotherapy were eligible for the study.The dataset was divided into a training set (N = 1497) and an independent validation set (N = 347). The synthetic minority oversampling technique (SMOTE) was used to handle the effect of imbalance class. Both the artificial neural network and logistic regression models were then developed on the training set with and without SMOTE, respectively. The performance of each model was evaluated on the validation set using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).Of the 1844 enrolled patients, 256 (13.9%) were diagnosed with peripherally inserted central catheter-related thrombosis. Predictive models were constructed in the training set and assessed in the validation set. Eight factors were selected as input variables to develop the artificial neural network model. Without SMOTE, the artificial neural network model (AUC = 0.725) outperformed the logistic regression model (AUC = 0.670, p = 0.039). SMOTE improved the performance of both two models based on AUC. With the SMOTE sampling, the artificial neural network model performed the best across all evaluated models, the AUC value remained statistically better than that of the logistic regression model (0.742 vs. 0.675, p = 0.004).Artificial neural network model can effectively predict peripherally inserted central catheter-related thrombosis in breast cancer patients receiving chemotherapy. Identifying high-risk groups with peripherally inserted central catheter-related thrombosis can provide close monitoring and an opportune time for intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OIC完成签到,获得积分10
刚刚
1秒前
李兴完成签到 ,获得积分10
1秒前
周周完成签到,获得积分10
2秒前
5秒前
TUTU应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
水星完成签到 ,获得积分10
6秒前
佳妹儿发布了新的文献求助10
6秒前
8秒前
Tom完成签到,获得积分10
9秒前
皮皮完成签到 ,获得积分10
12秒前
科研通AI5应助komisan采纳,获得10
12秒前
青衫完成签到 ,获得积分10
13秒前
13秒前
悄悄是心上的肖肖完成签到 ,获得积分10
15秒前
时尚俊驰发布了新的文献求助10
16秒前
aaqw_8完成签到,获得积分10
18秒前
佳妹儿完成签到,获得积分10
20秒前
YYY完成签到,获得积分10
21秒前
笨鸟先飞完成签到 ,获得积分10
21秒前
23秒前
淳于安筠完成签到,获得积分10
23秒前
道友等等我完成签到,获得积分0
24秒前
小小户完成签到 ,获得积分10
25秒前
四然应助wuludie采纳,获得10
26秒前
msk完成签到 ,获得积分10
26秒前
keleboys完成签到 ,获得积分10
27秒前
风中的冰蓝完成签到,获得积分10
27秒前
chriscda发布了新的文献求助10
28秒前
平淡的寄风完成签到,获得积分10
28秒前
赘婿应助时尚俊驰采纳,获得10
29秒前
Xxxuan完成签到,获得积分10
29秒前
张雷完成签到 ,获得积分10
29秒前
007完成签到 ,获得积分10
30秒前
酷酷的树叶完成签到 ,获得积分10
30秒前
月光族完成签到,获得积分10
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770540
求助须知:如何正确求助?哪些是违规求助? 3315496
关于积分的说明 10176697
捐赠科研通 3030555
什么是DOI,文献DOI怎么找? 1663036
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756705