Development and validation of a predictive model for peripherally inserted central catheter-related thrombosis in breast cancer patients based on artificial neural network: A prospective cohort study

医学 逻辑回归 接收机工作特性 前瞻性队列研究 血栓形成 乳腺癌 外周穿刺中心静脉导管 人工神经网络 队列 导管 癌症 外科 机器学习 内科学 计算机科学
作者
Jianqin Fu,Weifeng Cai,Bangwei Zeng,Lijuan He,Liqun Bao,Zhaodi Lin,Fang Lin,Wenjuan Hu,Linying Lin,Han-Ying Huang,Suhui Zheng,Liyuan Chen,Wei Zhou,Yanjuan Lin,Fangmeng Fu
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:135: 104341-104341 被引量:25
标识
DOI:10.1016/j.ijnurstu.2022.104341
摘要

Peripherally inserted central catheters have been extensively applied in clinical practices. However, they are associated with an increased risk of thrombosis. To improve patient care, it is critical to timely identify patients at risk of developing peripherally inserted central catheter-related thrombosis. Artificial neural networks have been successfully used in many areas of clinical events prediction and affected clinical decisions and practice.To develop and validate a novel clinical model based on artificial neural network for predicting peripherally inserted central catheter-related thrombosis in breast cancer patients who underwent chemotherapy and determine whether it may improve the prediction performance compared with the logistic regression model.A prospective cohort study.A large general hospital in Fujian Province, China.One thousand eight hundred and forty-four breast cancer patients with peripherally inserted central catheters placement for chemotherapy were eligible for the study.The dataset was divided into a training set (N = 1497) and an independent validation set (N = 347). The synthetic minority oversampling technique (SMOTE) was used to handle the effect of imbalance class. Both the artificial neural network and logistic regression models were then developed on the training set with and without SMOTE, respectively. The performance of each model was evaluated on the validation set using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).Of the 1844 enrolled patients, 256 (13.9%) were diagnosed with peripherally inserted central catheter-related thrombosis. Predictive models were constructed in the training set and assessed in the validation set. Eight factors were selected as input variables to develop the artificial neural network model. Without SMOTE, the artificial neural network model (AUC = 0.725) outperformed the logistic regression model (AUC = 0.670, p = 0.039). SMOTE improved the performance of both two models based on AUC. With the SMOTE sampling, the artificial neural network model performed the best across all evaluated models, the AUC value remained statistically better than that of the logistic regression model (0.742 vs. 0.675, p = 0.004).Artificial neural network model can effectively predict peripherally inserted central catheter-related thrombosis in breast cancer patients receiving chemotherapy. Identifying high-risk groups with peripherally inserted central catheter-related thrombosis can provide close monitoring and an opportune time for intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
libracong发布了新的文献求助20
1秒前
量子星尘发布了新的文献求助10
1秒前
六六完成签到 ,获得积分10
2秒前
ym发布了新的文献求助10
2秒前
2秒前
Sun发布了新的文献求助20
2秒前
FashionBoy应助妙木仙采纳,获得10
3秒前
Tiannn发布了新的文献求助20
5秒前
5秒前
5秒前
5秒前
shanshan发布了新的文献求助10
6秒前
典雅的谷槐完成签到,获得积分10
6秒前
JamesPei应助犹豫晓啸采纳,获得10
6秒前
7秒前
wanci应助年度总结采纳,获得10
7秒前
夏微凉发布了新的文献求助10
7秒前
8秒前
slow完成签到,获得积分10
8秒前
包子凯越完成签到,获得积分10
8秒前
争气发布了新的文献求助10
10秒前
11秒前
fanfan完成签到,获得积分10
11秒前
Li发布了新的文献求助10
11秒前
可爱的函函应助RR采纳,获得10
11秒前
11秒前
12秒前
华仔应助哈哈哈采纳,获得10
13秒前
13秒前
13秒前
jijijibibibi完成签到,获得积分10
13秒前
科研通AI6.1应助DTkunkun采纳,获得30
14秒前
加油吧弟弟完成签到,获得积分10
15秒前
fanfan发布了新的文献求助10
15秒前
明亮白山完成签到 ,获得积分10
16秒前
16秒前
柯续缘完成签到,获得积分10
16秒前
FC完成签到,获得积分20
16秒前
Lucas应助23232采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002