An improved capsule network for glioma segmentation on MRI images: A curriculum learning approach

分割 计算机科学 人工智能 水准点(测量) 深度学习 卷积神经网络 掷骰子 Sørensen–骰子系数 人工神经网络 模式识别(心理学) 图像分割 机器学习 数学 几何学 大地测量学 地理
作者
Amin Amiri Tehrani Zade,Maryam Jalili Aziz,Saeed Masoudnia,Alireza Mirbagheri,Alireza Ahmadian
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105917-105917 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.105917
摘要

Glioma segmentation is an essential step in tumor identification and treatment planning. Glioma segmentation is a challenging task because it appears with blurred and irregular boundaries in a variety of shapes. In this paper, we propose an efficient and novel model for automatic glioma segmentation based on capsule neural networks. We improved the architecture and training of the SegCaps model, the first capsule-based segmentation network. The proposed architecture is improved by introducing dilation blocks in the primary capsule block to get deeper features while avoiding resolution reduction. The prediction layer of the network is also modified using one-dimensional convolution filters, enabling the network to not only maximize tumor existence likelihood but also regularize the capsule orientations within the tumor. Our main contribution, however, is to introduce an enhanced curriculum-based training algorithm into the proposed SegCaps model. We adapt the curriculum learning for the model by suggesting a new pacing mechanism based on a roulette-wheel selection algorithm that enriches randomness in the network and prevents bias. A hybrid dice loss function is also employed, which is better adapted to the introduced curriculum-based training procedure. We evaluated the performance of improved SegCaps on the BraTS2020, a multimodal benchmark dataset for brain tumor segmentation. The experimental results confirmed that the improvements yield a top-performing yet memory-efficient deep capsule architecture. The proposed model outperformed the best-reported accuracies on the BraTS2020, achieving improved dice scores of 85.16% and 81.88% for tumor core and enhancing tumor segmentation, respectively. Using 90%, fewer parameters than the popular U-Net also confirmed the high memory efficiency of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健身boy完成签到,获得积分10
刚刚
盛京烟雨行完成签到 ,获得积分10
刚刚
刚刚
心灵美的大山完成签到,获得积分10
刚刚
刚刚
yuan发布了新的文献求助10
1秒前
诚心八宝粥完成签到,获得积分10
1秒前
2秒前
艺术家完成签到 ,获得积分10
3秒前
3秒前
3秒前
DreamMaker完成签到 ,获得积分10
3秒前
自由完成签到 ,获得积分10
3秒前
请勿继续发布了新的文献求助10
3秒前
聪明宛菡完成签到 ,获得积分10
4秒前
搜集达人应助木子采纳,获得10
5秒前
英姑应助伊丽莎白打工采纳,获得10
5秒前
6秒前
李浓发布了新的文献求助10
6秒前
长情绿凝完成签到,获得积分10
6秒前
6秒前
6秒前
FashionBoy应助科研废物采纳,获得10
7秒前
Ava应助zzznznnn采纳,获得10
7秒前
2799完成签到,获得积分10
7秒前
家家完成签到 ,获得积分10
8秒前
小牛同志完成签到,获得积分10
8秒前
8秒前
8秒前
西瓜霜完成签到 ,获得积分10
8秒前
深情安青应助aaaaa采纳,获得10
9秒前
9秒前
自由的过客完成签到,获得积分10
10秒前
转角一起走完成签到,获得积分20
10秒前
22完成签到,获得积分10
10秒前
10秒前
Zn应助伊丽莎白打工采纳,获得10
11秒前
江月渡完成签到,获得积分10
12秒前
研友_RLN0vZ发布了新的文献求助10
12秒前
虾仁发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759