An improved capsule network for glioma segmentation on MRI images: A curriculum learning approach

分割 计算机科学 人工智能 水准点(测量) 深度学习 卷积神经网络 掷骰子 Sørensen–骰子系数 人工神经网络 模式识别(心理学) 图像分割 机器学习 数学 几何学 大地测量学 地理
作者
Amin Amiri Tehrani Zade,Maryam Jalili Aziz,Saeed Masoudnia,Alireza Mirbagheri,Alireza Ahmadian
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105917-105917 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.105917
摘要

Glioma segmentation is an essential step in tumor identification and treatment planning. Glioma segmentation is a challenging task because it appears with blurred and irregular boundaries in a variety of shapes. In this paper, we propose an efficient and novel model for automatic glioma segmentation based on capsule neural networks. We improved the architecture and training of the SegCaps model, the first capsule-based segmentation network. The proposed architecture is improved by introducing dilation blocks in the primary capsule block to get deeper features while avoiding resolution reduction. The prediction layer of the network is also modified using one-dimensional convolution filters, enabling the network to not only maximize tumor existence likelihood but also regularize the capsule orientations within the tumor. Our main contribution, however, is to introduce an enhanced curriculum-based training algorithm into the proposed SegCaps model. We adapt the curriculum learning for the model by suggesting a new pacing mechanism based on a roulette-wheel selection algorithm that enriches randomness in the network and prevents bias. A hybrid dice loss function is also employed, which is better adapted to the introduced curriculum-based training procedure. We evaluated the performance of improved SegCaps on the BraTS2020, a multimodal benchmark dataset for brain tumor segmentation. The experimental results confirmed that the improvements yield a top-performing yet memory-efficient deep capsule architecture. The proposed model outperformed the best-reported accuracies on the BraTS2020, achieving improved dice scores of 85.16% and 81.88% for tumor core and enhancing tumor segmentation, respectively. Using 90%, fewer parameters than the popular U-Net also confirmed the high memory efficiency of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DZ发布了新的文献求助10
刚刚
传奇3应助张海桐采纳,获得10
刚刚
Ebony发布了新的文献求助10
1秒前
飞快的笑容完成签到,获得积分20
2秒前
3秒前
体贴绮露发布了新的文献求助10
3秒前
4秒前
1210xi发布了新的文献求助10
4秒前
单薄安梦发布了新的文献求助10
5秒前
烟花应助xl采纳,获得10
6秒前
万能图书馆应助畅快的荟采纳,获得10
8秒前
Stars完成签到,获得积分10
8秒前
9秒前
酷炫笑翠发布了新的文献求助10
9秒前
初识发布了新的文献求助10
9秒前
9秒前
10秒前
可耐的嫣娆完成签到 ,获得积分10
11秒前
11秒前
余方昆关注了科研通微信公众号
12秒前
pistachio发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
儒雅致远发布了新的文献求助10
13秒前
马康辉应助1210xi采纳,获得10
13秒前
儒雅书桃发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
xiaofan完成签到,获得积分10
15秒前
15秒前
畅快的荟完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
xl发布了新的文献求助10
18秒前
畅快的荟发布了新的文献求助10
19秒前
HT发布了新的文献求助30
19秒前
19秒前
SevaC完成签到,获得积分10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193