An improved capsule network for glioma segmentation on MRI images: A curriculum learning approach

分割 计算机科学 人工智能 水准点(测量) 深度学习 卷积神经网络 掷骰子 Sørensen–骰子系数 人工神经网络 模式识别(心理学) 图像分割 机器学习 数学 几何学 大地测量学 地理
作者
Amin Amiri Tehrani Zade,Maryam Jalili Aziz,Saeed Masoudnia,Alireza Mirbagheri,Alireza Ahmadian
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105917-105917 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.105917
摘要

Glioma segmentation is an essential step in tumor identification and treatment planning. Glioma segmentation is a challenging task because it appears with blurred and irregular boundaries in a variety of shapes. In this paper, we propose an efficient and novel model for automatic glioma segmentation based on capsule neural networks. We improved the architecture and training of the SegCaps model, the first capsule-based segmentation network. The proposed architecture is improved by introducing dilation blocks in the primary capsule block to get deeper features while avoiding resolution reduction. The prediction layer of the network is also modified using one-dimensional convolution filters, enabling the network to not only maximize tumor existence likelihood but also regularize the capsule orientations within the tumor. Our main contribution, however, is to introduce an enhanced curriculum-based training algorithm into the proposed SegCaps model. We adapt the curriculum learning for the model by suggesting a new pacing mechanism based on a roulette-wheel selection algorithm that enriches randomness in the network and prevents bias. A hybrid dice loss function is also employed, which is better adapted to the introduced curriculum-based training procedure. We evaluated the performance of improved SegCaps on the BraTS2020, a multimodal benchmark dataset for brain tumor segmentation. The experimental results confirmed that the improvements yield a top-performing yet memory-efficient deep capsule architecture. The proposed model outperformed the best-reported accuracies on the BraTS2020, achieving improved dice scores of 85.16% and 81.88% for tumor core and enhancing tumor segmentation, respectively. Using 90%, fewer parameters than the popular U-Net also confirmed the high memory efficiency of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chaga发布了新的文献求助10
刚刚
zhenzhen完成签到,获得积分10
刚刚
单纯的问玉完成签到,获得积分10
1秒前
大模型应助神勇的香魔采纳,获得10
1秒前
BGRC131031完成签到,获得积分10
1秒前
ml发布了新的文献求助10
2秒前
柠檬茶156完成签到,获得积分10
2秒前
西奥完成签到,获得积分10
2秒前
传奇3应助激动的士萧采纳,获得10
2秒前
领导范儿应助ernongchang采纳,获得10
2秒前
3秒前
友人A发布了新的文献求助10
3秒前
慕青应助杪123采纳,获得10
4秒前
4秒前
阡陌完成签到,获得积分10
4秒前
5秒前
MQ&FF发布了新的文献求助10
5秒前
shimmer.发布了新的文献求助10
5秒前
5秒前
6秒前
深情安青应助liupidanqiu采纳,获得10
6秒前
7秒前
懦弱的如蓉完成签到,获得积分10
7秒前
凡yeah发布了新的文献求助10
8秒前
8秒前
www发布了新的文献求助20
8秒前
9秒前
chen完成签到,获得积分20
9秒前
10秒前
nihao完成签到,获得积分10
10秒前
10秒前
10秒前
帆蚌侠发布了新的文献求助10
11秒前
桐桐应助清脆雪糕采纳,获得10
11秒前
我有一个博士梦完成签到 ,获得积分10
11秒前
12秒前
12秒前
FashionBoy应助科研通管家采纳,获得80
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170629
求助须知:如何正确求助?哪些是违规求助? 2821693
关于积分的说明 7936030
捐赠科研通 2482134
什么是DOI,文献DOI怎么找? 1322290
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608