惩罚法
离散化
斯托克斯问题
数学
斯托克斯流
先验与后验
应用数学
伽辽金法
有限元法
工作(物理)
要素(刑法)
Dirichlet边界条件
数学分析
边界(拓扑)
数学优化
物理
几何学
法学
哲学
流量(数学)
认识论
政治学
热力学
出处
期刊:Entropy
[Multidisciplinary Digital Publishing Institute]
日期:2022-08-03
卷期号:24 (8): 1072-1072
被引量:1
摘要
The element-free Galerkin (EFG) method with penalty for Stokes problems is proposed and analyzed in this work. A priori error estimates of the penalty method, which is used to deal with Dirichlet boundary conditions, are derived to illustrate its validity in a continuous sense. Based on a feasible assumption, it is proved that there is a unique weak solution in the modified weak form of penalized Stokes problems. Then, the error bounds with the penalty factor for the EFG discretization are derived, which provide a rationale for choosing an efficient penalty factor. Numerical examples are given to confirm the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI