亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep collaborative graph hashing for discriminative image retrieval

计算机科学 散列函数 图像检索 人工智能 特征哈希 语义鸿沟 深度学习 语义相似性 判别式 模式识别(心理学) 特征学习 图像自动标注 卷积神经网络 成对比较 理论计算机科学 哈希表 双重哈希 图像(数学) 计算机安全
作者
Zheng Zhang,Jianning Wang,Lei Zhu,Yadan Luo,Guangming Lu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109462-109462 被引量:25
标识
DOI:10.1016/j.patcog.2023.109462
摘要

The most striking success of deep hashing for large-scale image retrieval benefits from its powerful discriminative representation of deep learning and the attractive computational efficiency of compact hash code learning. Most existing deep semantic-preserving hashing regard the available semantic labels as the ground truth for classification or transform them into prevalent pairwise similarities. However, such strategies fail to capture the interactive correlations between the visual semantics embedded in images and the given category-level labels. Moreover, they utilize the fixed piecewise or pairwise semantics as the optimization objectives, which suffers from the limited flexibility on semantic representation and adaptive knowledge communication in hash code learning. In this paper, we propose a novel Deep Collaborative Graph Hashing (DCGH), which collectively considers multi-level semantic embeddings, latent common space construction, and intrinsic structure mining in discriminative hash codes learning, for large-scale image retrieval. To the best of our knowledge, this is the first collaborative graph hashing for image retrieval. Specifically, instead of using the conventional single-flow visual network architecture, we design a dual-stream feature encoding network to jointly explore the multi-level semantic information across visual and semantic features. Moreover, a well-established shared latent space is constructed based on space reconstruction to explore the concurrent information and bridge the semantic gap between visual and semantic space. Furthermore, a graph convolutional network is introduced to preserve the latent structural relations in the optimal pairwise similarity-preserving hash codes. The whole learning framework is optimized in an end-to-end fashion. Extensive experiments on different datasets demonstrate that our DCGH can achieve superb image retrieval performance against state-of-the-art supervised hashing methods. The source codes of the proposed DCGH are available at https://github.com/JalinWang/DCGH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助TXZ06采纳,获得10
3秒前
思源应助mervin采纳,获得10
3秒前
28秒前
29秒前
TXZ06发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
45秒前
49秒前
zwang688发布了新的文献求助10
53秒前
顾矜应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
mervin发布了新的文献求助10
1分钟前
2分钟前
2分钟前
DannyNickolov发布了新的文献求助10
2分钟前
2分钟前
曲夜白完成签到 ,获得积分10
2分钟前
Owen应助荆棘鸟采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
DannyNickolov完成签到,获得积分10
2分钟前
mervin完成签到,获得积分10
2分钟前
2分钟前
Hodlumm发布了新的文献求助10
2分钟前
2分钟前
隐形曼青应助谷千千采纳,获得10
3分钟前
3分钟前
4分钟前
谷千千发布了新的文献求助10
4分钟前
谷千千完成签到,获得积分10
4分钟前
4分钟前
jyy发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
Shuo应助科研通管家采纳,获得20
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
5分钟前
文艺易蓉发布了新的文献求助10
5分钟前
小蘑菇应助文艺易蓉采纳,获得10
5分钟前
调皮醉波完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750