亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep collaborative graph hashing for discriminative image retrieval

计算机科学 散列函数 图像检索 人工智能 特征哈希 语义鸿沟 深度学习 语义相似性 判别式 模式识别(心理学) 特征学习 图像自动标注 卷积神经网络 成对比较 理论计算机科学 哈希表 双重哈希 图像(数学) 计算机安全
作者
Zheng Zhang,Jianning Wang,Lei Zhu,Yadan Luo,Guangming Lu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:139: 109462-109462 被引量:25
标识
DOI:10.1016/j.patcog.2023.109462
摘要

The most striking success of deep hashing for large-scale image retrieval benefits from its powerful discriminative representation of deep learning and the attractive computational efficiency of compact hash code learning. Most existing deep semantic-preserving hashing regard the available semantic labels as the ground truth for classification or transform them into prevalent pairwise similarities. However, such strategies fail to capture the interactive correlations between the visual semantics embedded in images and the given category-level labels. Moreover, they utilize the fixed piecewise or pairwise semantics as the optimization objectives, which suffers from the limited flexibility on semantic representation and adaptive knowledge communication in hash code learning. In this paper, we propose a novel Deep Collaborative Graph Hashing (DCGH), which collectively considers multi-level semantic embeddings, latent common space construction, and intrinsic structure mining in discriminative hash codes learning, for large-scale image retrieval. To the best of our knowledge, this is the first collaborative graph hashing for image retrieval. Specifically, instead of using the conventional single-flow visual network architecture, we design a dual-stream feature encoding network to jointly explore the multi-level semantic information across visual and semantic features. Moreover, a well-established shared latent space is constructed based on space reconstruction to explore the concurrent information and bridge the semantic gap between visual and semantic space. Furthermore, a graph convolutional network is introduced to preserve the latent structural relations in the optimal pairwise similarity-preserving hash codes. The whole learning framework is optimized in an end-to-end fashion. Extensive experiments on different datasets demonstrate that our DCGH can achieve superb image retrieval performance against state-of-the-art supervised hashing methods. The source codes of the proposed DCGH are available at https://github.com/JalinWang/DCGH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助沉醉的中国钵采纳,获得20
20秒前
whimsyhui完成签到,获得积分20
32秒前
Yuki完成签到 ,获得积分10
37秒前
47秒前
1分钟前
牛哥还是强啊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
sheadenchu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
2分钟前
Wang完成签到 ,获得积分20
2分钟前
YifanWang完成签到,获得积分0
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
万能图书馆应助CC采纳,获得30
4分钟前
科目三应助沉醉的中国钵采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
磷酸丙糖异构酶完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助雪山飞龙采纳,获得10
4分钟前
lanxinge完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
wanci应助科研通管家采纳,获得50
5分钟前
量子星尘发布了新的文献求助10
5分钟前
pjjpk01完成签到,获得积分10
5分钟前
6分钟前
CC发布了新的文献求助30
6分钟前
矜持完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
激动的55完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622291
求助须知:如何正确求助?哪些是违规求助? 4707352
关于积分的说明 14939095
捐赠科研通 4770394
什么是DOI,文献DOI怎么找? 2552301
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085