Deep collaborative graph hashing for discriminative image retrieval

计算机科学 散列函数 图像检索 人工智能 特征哈希 语义鸿沟 深度学习 语义相似性 判别式 模式识别(心理学) 特征学习 图像自动标注 卷积神经网络 成对比较 理论计算机科学 哈希表 双重哈希 图像(数学) 计算机安全
作者
Zheng Zhang,Jianning Wang,Lei Zhu,Yadan Luo,Guangming Lu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109462-109462 被引量:25
标识
DOI:10.1016/j.patcog.2023.109462
摘要

The most striking success of deep hashing for large-scale image retrieval benefits from its powerful discriminative representation of deep learning and the attractive computational efficiency of compact hash code learning. Most existing deep semantic-preserving hashing regard the available semantic labels as the ground truth for classification or transform them into prevalent pairwise similarities. However, such strategies fail to capture the interactive correlations between the visual semantics embedded in images and the given category-level labels. Moreover, they utilize the fixed piecewise or pairwise semantics as the optimization objectives, which suffers from the limited flexibility on semantic representation and adaptive knowledge communication in hash code learning. In this paper, we propose a novel Deep Collaborative Graph Hashing (DCGH), which collectively considers multi-level semantic embeddings, latent common space construction, and intrinsic structure mining in discriminative hash codes learning, for large-scale image retrieval. To the best of our knowledge, this is the first collaborative graph hashing for image retrieval. Specifically, instead of using the conventional single-flow visual network architecture, we design a dual-stream feature encoding network to jointly explore the multi-level semantic information across visual and semantic features. Moreover, a well-established shared latent space is constructed based on space reconstruction to explore the concurrent information and bridge the semantic gap between visual and semantic space. Furthermore, a graph convolutional network is introduced to preserve the latent structural relations in the optimal pairwise similarity-preserving hash codes. The whole learning framework is optimized in an end-to-end fashion. Extensive experiments on different datasets demonstrate that our DCGH can achieve superb image retrieval performance against state-of-the-art supervised hashing methods. The source codes of the proposed DCGH are available at https://github.com/JalinWang/DCGH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzz发布了新的文献求助10
1秒前
luckly发布了新的文献求助10
1秒前
月岛滴滴发布了新的文献求助10
1秒前
科研通AI2S应助爱上彩色采纳,获得10
1秒前
小彭在海底完成签到,获得积分20
1秒前
1秒前
斯文败类应助zhangxueqing采纳,获得10
2秒前
ww完成签到,获得积分10
2秒前
2秒前
传奇3应助Sybil采纳,获得10
2秒前
yiyi发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
搜集达人应助一只雪兔子采纳,获得10
3秒前
最终幻想完成签到,获得积分10
3秒前
lilili6666发布了新的文献求助10
3秒前
Curry完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
在水一方应助RATHER采纳,获得10
4秒前
YZHSCI888发布了新的文献求助10
4秒前
5秒前
CipherSage应助大写的笨采纳,获得10
5秒前
dzjin发布了新的文献求助10
5秒前
ww发布了新的文献求助10
6秒前
zzzzZ12138发布了新的文献求助30
7秒前
7秒前
悦耳伊发布了新的文献求助10
8秒前
8秒前
memedaaaah发布了新的文献求助10
8秒前
张杰发布了新的文献求助10
8秒前
8秒前
9秒前
一篇吃不饱完成签到,获得积分10
9秒前
共享精神应助摸鱼大王采纳,获得10
10秒前
10秒前
10秒前
10秒前
今后应助灰灰成长中采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701