Deep collaborative graph hashing for discriminative image retrieval

计算机科学 散列函数 图像检索 人工智能 特征哈希 语义鸿沟 深度学习 语义相似性 判别式 模式识别(心理学) 特征学习 图像自动标注 卷积神经网络 成对比较 理论计算机科学 哈希表 双重哈希 图像(数学) 计算机安全
作者
Zheng Zhang,Jianning Wang,Lei Zhu,Yadan Luo,Guangming Lu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109462-109462 被引量:25
标识
DOI:10.1016/j.patcog.2023.109462
摘要

The most striking success of deep hashing for large-scale image retrieval benefits from its powerful discriminative representation of deep learning and the attractive computational efficiency of compact hash code learning. Most existing deep semantic-preserving hashing regard the available semantic labels as the ground truth for classification or transform them into prevalent pairwise similarities. However, such strategies fail to capture the interactive correlations between the visual semantics embedded in images and the given category-level labels. Moreover, they utilize the fixed piecewise or pairwise semantics as the optimization objectives, which suffers from the limited flexibility on semantic representation and adaptive knowledge communication in hash code learning. In this paper, we propose a novel Deep Collaborative Graph Hashing (DCGH), which collectively considers multi-level semantic embeddings, latent common space construction, and intrinsic structure mining in discriminative hash codes learning, for large-scale image retrieval. To the best of our knowledge, this is the first collaborative graph hashing for image retrieval. Specifically, instead of using the conventional single-flow visual network architecture, we design a dual-stream feature encoding network to jointly explore the multi-level semantic information across visual and semantic features. Moreover, a well-established shared latent space is constructed based on space reconstruction to explore the concurrent information and bridge the semantic gap between visual and semantic space. Furthermore, a graph convolutional network is introduced to preserve the latent structural relations in the optimal pairwise similarity-preserving hash codes. The whole learning framework is optimized in an end-to-end fashion. Extensive experiments on different datasets demonstrate that our DCGH can achieve superb image retrieval performance against state-of-the-art supervised hashing methods. The source codes of the proposed DCGH are available at https://github.com/JalinWang/DCGH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助落寞机器猫采纳,获得10
2秒前
yuk完成签到,获得积分20
3秒前
明捷发布了新的文献求助10
4秒前
wcli完成签到,获得积分10
4秒前
852应助武雨寒采纳,获得10
4秒前
艾欧比发布了新的文献求助10
5秒前
Wellnemo发布了新的文献求助10
5秒前
8秒前
LJ完成签到,获得积分10
9秒前
tramp应助1177采纳,获得10
10秒前
10秒前
珺儿完成签到,获得积分10
11秒前
11秒前
顾矜应助qin采纳,获得10
12秒前
Steven发布了新的文献求助10
14秒前
小马甲应助HY采纳,获得10
15秒前
上官若男应助零一采纳,获得10
15秒前
斯文败类应助淡淡采白采纳,获得10
16秒前
呜呜啦啦完成签到 ,获得积分10
17秒前
大个应助Molly采纳,获得10
17秒前
爱听歌的新烟完成签到,获得积分10
17秒前
犇骉发布了新的文献求助10
17秒前
大美女发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
刘宇完成签到,获得积分20
19秒前
SYLH应助17采纳,获得10
19秒前
顾矜应助丶夜落情泪采纳,获得30
21秒前
22秒前
22秒前
zz完成签到,获得积分20
22秒前
打打应助ZL采纳,获得10
22秒前
22秒前
23秒前
明亮无颜发布了新的文献求助10
24秒前
XWT完成签到,获得积分10
24秒前
25秒前
出门见喜发布了新的文献求助10
25秒前
顾矜应助勤劳的音响采纳,获得10
25秒前
王赞应助机灵的茹妖采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430