化学
氧合物
脱氢
脱碳
光化学
催化作用
丙烷
激进的
有机化学
作者
Zihao Zhang,Jinshu Tian,Xiangkun Wu,Ivan Surin,Javier Pérez‐Ramírez,Patrick Hemberger,András Bödi
摘要
Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI