The Value of Social Media Data in Fashion Forecasting

社会化媒体 预测能力 服装 价值(数学) 样品(材料) 营销 相关性(法律) 大数据 索引(排版) 产品(数学) 计算机科学 广告 业务 数据挖掘 哲学 法学 化学 考古 几何学 万维网 机器学习 认识论 历史 色谱法 数学 政治学
作者
Youran Fu,Marshall L. Fisher
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (3): 1136-1154
标识
DOI:10.1287/msom.2023.1193
摘要

Problem definition: How to use social media to predict style color and jeans fit sales for a retailer. Academic/practical relevance: Neither retail practice nor the academic literature provides a method for using social media to predict style color and jeans fit sales for a retailer. We present and validate a systematic approach for doing that. Methodology: Demand forecasting in the fashion industry is challenging due to short product lifetimes, long manufacturing lead times, and constant innovation of fashion products. We investigate the value of social media information for color trends and jeans fit forecasting. We partner with three multinational retailers, two apparel and one footwear, and combine their proprietary data sets with web-crawled publicly available data on Twitter and the Google Search Volume Index. We implement a variety of machine learning models to develop forecasts that can be used in setting the initial shipment quantity for an item, arguably the most important decision for fashion retailers. Results: Our findings show that fine-grained social media information has significant predictive power in forecasting color and fit demands months in advance of the sales season, and therefore greatly helps in making the initial shipment quantity decision. The predictive power of including social media features, measured by the improvement of the out-of-sample mean absolute deviation over current practice ranges from 24% to 57%. Managerial implications: To our knowledge, this study is the first to explore and demonstrate the value of social media information in fashion demand forecasting in a way that is practical and operable for fashion retailers. With consistent results across all three retailers, we demonstrate the robustness of our findings over market and geographic heterogeneity, and different forecast horizons. Moreover, we discuss potential mechanisms that might be driving this significant predictive power. Our results suggest that changes in fashion demand are driven more by “bottom-up” changes in consumer preferences than by “top-down” influence from the fashion industry. Funding: This work was supported by Wharton School Fishman-Davidson Center for Service and Operations Management, the Wharton School Baker Retailing Center, and the Wharton School Risk Management Center Russell Ackoff Doctoral Student Fellowship. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1193 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮应助王喂喂哦啊嗯采纳,获得10
刚刚
moruifei完成签到,获得积分10
刚刚
松子儿hhh发布了新的文献求助10
1秒前
1秒前
你好发布了新的文献求助10
1秒前
花蕊发布了新的文献求助10
1秒前
洛苏发布了新的文献求助10
1秒前
科研通AI2S应助忐忑的尔容采纳,获得10
1秒前
2秒前
Sophie_W完成签到,获得积分10
2秒前
瑶瑶酱完成签到 ,获得积分10
2秒前
月亮煮粥发布了新的文献求助10
2秒前
3秒前
杨杨杨完成签到,获得积分10
3秒前
美满冷安发布了新的文献求助10
3秒前
3秒前
3秒前
合适迎彤完成签到,获得积分10
4秒前
daijk发布了新的文献求助10
5秒前
Jade发布了新的文献求助10
6秒前
调研昵称发布了新的文献求助10
6秒前
Kawhichan完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
酷波er应助HXH采纳,获得10
8秒前
memo完成签到,获得积分10
9秒前
9秒前
亓大大发布了新的文献求助10
10秒前
陈陈完成签到,获得积分10
10秒前
咕咕咕完成签到 ,获得积分10
10秒前
jgwang发布了新的文献求助10
10秒前
tt完成签到,获得积分10
10秒前
快乐映秋完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
1Q84完成签到,获得积分10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151225
求助须知:如何正确求助?哪些是违规求助? 2802672
关于积分的说明 7849833
捐赠科研通 2460115
什么是DOI,文献DOI怎么找? 1309560
科研通“疑难数据库(出版商)”最低求助积分说明 628956
版权声明 601760