Chatbots for future docs: exploring medical students’ attitudes and knowledge towards artificial intelligence and medical chatbots

课程 医学教育 医疗保健 适应(眼睛) 工作(物理) 心理学 情感(语言学) 医学 知识管理 计算机科学 工程类 教育学 机械工程 经济增长 沟通 经济 神经科学
作者
Julia-Astrid Moldt,Teresa Festl‐Wietek,Amir Madany Mamlouk,Kay Nieselt,Wolfgang Fuhl,Anne Herrmann–Werner
出处
期刊:Medical Education Online [Taylor & Francis]
卷期号:28 (1) 被引量:71
标识
DOI:10.1080/10872981.2023.2182659
摘要

Artificial intelligence (AI) in medicine and digital assistance systems such as chatbots will play an increasingly important role in future doctor - patient communication. To benefit from the potential of this technical innovation and ensure optimal patient care, future physicians should be equipped with the appropriate skills. Accordingly, a suitable place for the management and adaptation of digital assistance systems must be found in the medical education curriculum. To determine the existing levels of knowledge of medical students about AI chatbots in particular in the healthcare setting, this study surveyed medical students of the University of Luebeck and the University Hospital of Tuebingen. Using standardized quantitative questionnaires and qualitative analysis of group discussions, the attitudes of medical students toward AI and chatbots in medicine were investigated. From this, relevant requirements for the future integration of AI into the medical curriculum could be identified. The aim was to establish a basic understanding of the opportunities, limitations, and risks, as well as potential areas of application of the technology. The participants (N = 12) were able to develop an understanding of how AI and chatbots will affect their future daily work. Although basic attitudes toward the use of AI were positive, the students also expressed concerns. There were high levels of agreement regarding the use of AI in administrative settings (83.3%) and research with health-related data (91.7%). However, participants expressed concerns that data protection may be insufficiently guaranteed (33.3%) and that they might be increasingly monitored at work in the future (58.3%). The evaluations indicated that future physicians want to engage more intensively with AI in medicine. In view of future developments, AI and data competencies should be taught in a structured way during the medical curriculum and integrated into curricular teaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
111完成签到,获得积分10
2秒前
昀松完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
6秒前
大模型应助公冶代桃采纳,获得10
6秒前
7秒前
红莲墨生发布了新的文献求助200
7秒前
慕青应助科研通管家采纳,获得10
8秒前
iNk应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
黎某发布了新的文献求助10
9秒前
iNk应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI5应助奇怪的浮川采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得30
9秒前
10秒前
zhy完成签到,获得积分10
11秒前
上官若男应助落寞臻采纳,获得10
12秒前
晓慕完成签到 ,获得积分10
12秒前
早起发布了新的文献求助10
14秒前
jingjing完成签到 ,获得积分10
14秒前
充电宝应助科研人才采纳,获得10
20秒前
南楼青主完成签到,获得积分10
20秒前
无畏完成签到 ,获得积分10
20秒前
young完成签到,获得积分10
21秒前
22秒前
wanci应助小庾儿采纳,获得10
22秒前
乐乐应助1L聚合釜采纳,获得10
23秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands 1st Edition 1500
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772768
求助须知:如何正确求助?哪些是违规求助? 3318318
关于积分的说明 10189651
捐赠科研通 3033100
什么是DOI,文献DOI怎么找? 1664093
邀请新用户注册赠送积分活动 796089
科研通“疑难数据库(出版商)”最低求助积分说明 757245