清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Proteomics-wise, how similar are mouse and human platelets?

蛋白质组学 蛋白质组 血小板 计算生物学 巨核细胞 生物 鉴定(生物学) 生物信息学 造血 医学 免疫学 细胞生物学 干细胞 基因 遗传学 植物
作者
Patricia Martínez-Botía,P. Villar,Graciela Carbajo-Argüelles,Zacaria Jaiteh,Andrea Acebes-Huerta,Laura Gutiérrez
出处
期刊:Platelets [Informa]
卷期号:34 (1) 被引量:1
标识
DOI:10.1080/09537104.2023.2220415
摘要

The field of proteomics and its application to platelet biology, is rapidly and promisingly developing. Platelets (and megakaryocytes) are postulated as biosensors of health and disease, and their proteome poses as a tool to identify the specific health-disease hallmarks. Furthermore, the clinical management of certain pathologies where platelets are active players demands the development of alternative treatments, such is the case in patients where the balance thrombosis-bleeding is compromised, and a proteomics approach might aid at the identification of novel targets. Hereby, the mouse and human platelet proteomes and secretomes from public databases are compared, which shows that human and mouse platelets share a highly conserved proteome, considering identified proteins, and most importantly, their relative abundance. These supports, also interspecies wise, the use of the proteomics tool in the field, substantiated by a growing number of clinically relevant studies in humans or preclinical models. While the study of platelets through proteomics seems accessible and direct (i.e. noninvasive blood sampling, enucleated), there are some points of concern regarding the quality control of samples for such proteomics studies. Importantly, the quality of the generated data is improving over the years, which will allow cross-study comparisons. In parallel, the application of proteomics to the megakaryocyte compartment has a promising but long journey ahead. We foresee and encourage the application of platelet proteomics for diagnostic/prognostic purposes even beyond hematopoiesis and transfusion medicine, and as a tool that will procure the improvement of current therapies and the development of alternative treatment options.The unbiased identification and quantitation of the protein profile (the so-called proteome) of cells, tissues, or organs, has gained attention from different fields because it gives additional valuable information to research questions. Understanding the protein building blocks of a biological system in normal physiological processes and how this may be altered in disease, may allow the discovery of biomarkers that could be used in diagnosis (early diagnosis), prognosis of disease or response to treatment. Furthermore, it may allow the identification of novel targets to develop personalized treatment options. Platelets, the anucleate cell components of the blood in charge of maintaining the body hemostasis, are postulated as biosensors of health and disease, and their proteome poses as a tool to identify health-disease hallmarks. Since platelets are in the circulation, a noninvasive blood sample is sufficient to obtain platelets from donors or patients in order to acquire information of the platelet proteome. Still, some research questions might require the use of animal preclinical models, where researchers may phenocopy human disorders, pathologies or diseases, to better understand the mechanisms behind these traits and to test potential novel treatments. How meaningful the studies in preclinical models are depends on how similar the biological systems of study are, interspecies wise. Hereby, the mouse and human platelet proteomes from available databases obtained by different research groups are compared, which shows that human and mouse platelets share a highly conserved proteome, considering identified proteins, and most importantly, their relative abundance. These supports, also interspecies wise, the use of the proteomics tool in the field, an approach with growing clinical relevance, as discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
t铁核桃1985完成签到 ,获得积分0
7秒前
点点完成签到 ,获得积分10
9秒前
9秒前
ppf发布了新的文献求助10
13秒前
23秒前
空儒完成签到 ,获得积分10
25秒前
Criminology34应助CXS采纳,获得10
35秒前
43秒前
lsl完成签到 ,获得积分10
47秒前
Criminology34应助CXS采纳,获得10
50秒前
Tree_QD完成签到 ,获得积分10
51秒前
无极2023完成签到 ,获得积分10
57秒前
仙女完成签到 ,获得积分10
59秒前
1分钟前
kittykitten完成签到 ,获得积分10
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
爆米花应助ppf采纳,获得10
1分钟前
正直的夏真完成签到 ,获得积分10
1分钟前
1分钟前
慕豁发布了新的文献求助10
1分钟前
1分钟前
科科通通完成签到,获得积分10
2分钟前
慕豁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yushiolo完成签到 ,获得积分10
2分钟前
ppf发布了新的文献求助10
2分钟前
邓洁宜完成签到,获得积分10
2分钟前
lyj完成签到 ,获得积分0
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
拼搏乐珍完成签到,获得积分10
2分钟前
持卿发布了新的文献求助80
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
sting发布了新的文献求助10
3分钟前
帅气思雁发布了新的文献求助10
3分钟前
Lny发布了新的文献求助20
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614971
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551