亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The construction of lattice-matched CdS-Ag2S heterojunction photocatalysts: High-intensity built-in electric field effectively boosts bulk-charge separation efficiency

异质结 材料科学 电场 光电子学 载流子 光致发光 格子(音乐) 光谱学 物理 声学 量子力学
作者
Ziying Yuan,Yongyong Cao,Yue Meng,Guoxiang Pan,Yifan Zheng,Zheming Ni,Shengjie Xia
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:458: 131895-131895 被引量:63
标识
DOI:10.1016/j.jhazmat.2023.131895
摘要

The built-in electric field of heterojunction can effectively promote carrier separation and transfer. While, its interface orientation is often random, leading to lattice mismatch and high resistance, thus limiting the efficiency of interfacial charge transfer. Herein, the lattice-matched heterojunction (CdS-Ag2S) was constructed by ion-exchange epitaxial growth. The results of surface photovoltage spectroscopy (SPV), transient photovoltage spectroscopy (TPV), and time-resolved photoluminescence (TRPL) show that the lattice-matched heterojunction has higher charge separation efficiency and longer photogenerated carrier lifetime than that of lattice-mismatched one. The lattice-matched CdS-Ag2S has a high built-in electric field (BIEF) value of 103.42 and a bulk-charge separation (BCS) efficiency of 68.71%, which is about three times higher than that of the lattice-mismatched heterojunction (CdS-Ag2S-M). In addition, the photodegradation efficiency of CdS-Ag2S towards norfloxacin (NOR) was also 3.4 times higher than that of CdS-Ag2S-M. The above results and density functional theory (DFT) calculations indicate that improving the lattice matching at the heterojunction is beneficial for establishing a high-intensity built-in electric field and effectively promoting bulk-charge separation efficiency, thus achieving excellent photocatalytic performance. This work provides an essential reference for the research of high-performance heterojunction photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助体贴花卷采纳,获得10
3秒前
柴胡完成签到,获得积分10
13秒前
15秒前
世良发布了新的文献求助10
18秒前
林大壮发布了新的文献求助10
35秒前
43秒前
44秒前
体贴花卷发布了新的文献求助10
47秒前
Ru完成签到 ,获得积分10
51秒前
星辰大海应助体贴花卷采纳,获得10
1分钟前
1分钟前
chen发布了新的文献求助10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
张张完成签到 ,获得积分10
1分钟前
科研通AI6应助chen采纳,获得10
1分钟前
领导范儿应助世良采纳,获得10
1分钟前
xuanxuan完成签到 ,获得积分10
1分钟前
cherish完成签到,获得积分10
1分钟前
进击的PhD完成签到 ,获得积分0
1分钟前
1分钟前
儒雅完成签到 ,获得积分10
1分钟前
世良发布了新的文献求助10
1分钟前
浮游应助坦率的枕头采纳,获得10
1分钟前
坦率的枕头完成签到,获得积分10
1分钟前
肖恩完成签到,获得积分10
1分钟前
MWY完成签到,获得积分10
2分钟前
科研通AI6应助浪里白条采纳,获得10
2分钟前
李爱国应助欣喜的广山采纳,获得10
2分钟前
2分钟前
世良发布了新的文献求助10
2分钟前
科目三应助凌洛尘采纳,获得10
2分钟前
2分钟前
Jessie完成签到 ,获得积分10
2分钟前
马克发布了新的文献求助10
2分钟前
马克完成签到,获得积分20
2分钟前
烟花应助世良采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373