The construction of lattice-matched CdS-Ag2S heterojunction photocatalysts: High-intensity built-in electric field effectively boosts bulk-charge separation efficiency

异质结 材料科学 电场 光电子学 载流子 光致发光 格子(音乐) 光谱学 物理 声学 量子力学
作者
Ziying Yuan,Yongyong Cao,Yue Meng,Guoxiang Pan,Yifan Zheng,Zheming Ni,Shengjie Xia
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:458: 131895-131895 被引量:63
标识
DOI:10.1016/j.jhazmat.2023.131895
摘要

The built-in electric field of heterojunction can effectively promote carrier separation and transfer. While, its interface orientation is often random, leading to lattice mismatch and high resistance, thus limiting the efficiency of interfacial charge transfer. Herein, the lattice-matched heterojunction (CdS-Ag2S) was constructed by ion-exchange epitaxial growth. The results of surface photovoltage spectroscopy (SPV), transient photovoltage spectroscopy (TPV), and time-resolved photoluminescence (TRPL) show that the lattice-matched heterojunction has higher charge separation efficiency and longer photogenerated carrier lifetime than that of lattice-mismatched one. The lattice-matched CdS-Ag2S has a high built-in electric field (BIEF) value of 103.42 and a bulk-charge separation (BCS) efficiency of 68.71%, which is about three times higher than that of the lattice-mismatched heterojunction (CdS-Ag2S-M). In addition, the photodegradation efficiency of CdS-Ag2S towards norfloxacin (NOR) was also 3.4 times higher than that of CdS-Ag2S-M. The above results and density functional theory (DFT) calculations indicate that improving the lattice matching at the heterojunction is beneficial for establishing a high-intensity built-in electric field and effectively promoting bulk-charge separation efficiency, thus achieving excellent photocatalytic performance. This work provides an essential reference for the research of high-performance heterojunction photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Venus完成签到,获得积分10
2秒前
benxiaohai完成签到,获得积分0
2秒前
深情安青应助小狒狒采纳,获得10
2秒前
3秒前
ryen发布了新的文献求助10
3秒前
yangmeng发布了新的文献求助10
4秒前
ding应助沈默然采纳,获得10
5秒前
偏偏意气用事完成签到,获得积分10
5秒前
健忘惜海完成签到,获得积分10
6秒前
7秒前
ryen完成签到,获得积分10
7秒前
7秒前
Jarwee完成签到,获得积分10
9秒前
fireking_sid完成签到,获得积分10
10秒前
11秒前
舒适的石头完成签到,获得积分10
11秒前
无极微光应助xue采纳,获得20
12秒前
meizi0109完成签到 ,获得积分10
13秒前
活泼的棒棒糖完成签到 ,获得积分10
13秒前
14秒前
16秒前
洛阳官人完成签到,获得积分10
18秒前
康师傅给康师傅的求助进行了留言
18秒前
18秒前
欧斌完成签到,获得积分10
18秒前
18秒前
18秒前
心行完成签到 ,获得积分10
19秒前
19秒前
甜美的瑾瑜完成签到,获得积分10
19秒前
20秒前
20秒前
热血马儿完成签到,获得积分10
20秒前
spp完成签到,获得积分10
20秒前
jieni完成签到,获得积分10
21秒前
橙子完成签到 ,获得积分10
22秒前
zheng華发布了新的文献求助10
22秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569751
求助须知:如何正确求助?哪些是违规求助? 4654787
关于积分的说明 14710532
捐赠科研通 4595981
什么是DOI,文献DOI怎么找? 2522202
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1463987