亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data

计算机科学 暖通空调 机器学习 人工智能 监督学习 变压器 学习迁移 半监督学习 人工神经网络 数据挖掘 工程类 空调 机械工程 电气工程 电压
作者
Cheng Fan,Yutian Lei,Yongjun Sun,Like Mo
出处
期刊:Energy [Elsevier BV]
卷期号:278: 127972-127972 被引量:23
标识
DOI:10.1016/j.energy.2023.127972
摘要

Existing data-driven HVAC fault diagnosis methods mainly adopt supervised learning paradigms, making them less feasible/implementable for individual buildings with limited labeled data. Considering the demanding requirements of domain expertise and labor work associated in data labeling, advanced data analytics are urgently needed to utilize massive unlabeled operational data for reliable predictive modeling. Therefore, this study proposes a novel transformer-based self-supervised learning methodology for improved HVAC fault diagnosis performance using limited labeled data. Three self-supervised learning approaches are developed to extract knowledge from unlabeled operational data through self-prediction and contrastive learning tasks. A customized transformer-based neural network is designed to ensure the efficiency and effectiveness in tabular data analysis and knowledge transfer. Data experiments have been conducted using multiple HVAC datasets considering different data availabilities, self-supervised learning approaches and model architectures. The results validate the capabilities of self-supervised learning in developing reliable HVAC fault classification models. Compared with conventional supervised learning solutions, the methodology proposed not only substantially reduce the data labelling works required, but also improves the fault diagnosis performance by up to 8.44%. The research outcomes are valuable for upgrading predictive modeling protocols in the building field for developing easy-implementation and high-performance data-driven solutions with limited labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助舒服的觅夏采纳,获得10
4秒前
suicone完成签到,获得积分10
11秒前
zqq完成签到,获得积分0
19秒前
21秒前
归陌完成签到 ,获得积分10
21秒前
46秒前
mmyhn发布了新的文献求助10
50秒前
1分钟前
Dave发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
wbs13521完成签到,获得积分0
1分钟前
2分钟前
儒雅致远发布了新的文献求助10
2分钟前
2分钟前
Hello应助儒雅致远采纳,获得10
2分钟前
正在获取昵称中...完成签到,获得积分10
2分钟前
2分钟前
爆米花应助xiongdi521采纳,获得10
2分钟前
3分钟前
xiongdi521发布了新的文献求助10
3分钟前
xiongdi521完成签到,获得积分10
3分钟前
mmyhn发布了新的文献求助10
3分钟前
3分钟前
4分钟前
Liiiiiiiiii发布了新的文献求助10
4分钟前
三水完成签到 ,获得积分20
4分钟前
小净完成签到 ,获得积分20
4分钟前
cccttt完成签到,获得积分10
4分钟前
mmyhn发布了新的文献求助10
4分钟前
Echo完成签到,获得积分10
4分钟前
无花果应助zzx采纳,获得10
4分钟前
可爱的香菇完成签到 ,获得积分10
5分钟前
5分钟前
dovejingling完成签到,获得积分10
5分钟前
lulu发布了新的文献求助20
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228