Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data

计算机科学 暖通空调 机器学习 人工智能 监督学习 变压器 学习迁移 半监督学习 人工神经网络 数据挖掘 工程类 空调 机械工程 电气工程 电压
作者
Cheng Fan,Yutian Lei,Yongjun Sun,Like Mo
出处
期刊:Energy [Elsevier BV]
卷期号:278: 127972-127972 被引量:23
标识
DOI:10.1016/j.energy.2023.127972
摘要

Existing data-driven HVAC fault diagnosis methods mainly adopt supervised learning paradigms, making them less feasible/implementable for individual buildings with limited labeled data. Considering the demanding requirements of domain expertise and labor work associated in data labeling, advanced data analytics are urgently needed to utilize massive unlabeled operational data for reliable predictive modeling. Therefore, this study proposes a novel transformer-based self-supervised learning methodology for improved HVAC fault diagnosis performance using limited labeled data. Three self-supervised learning approaches are developed to extract knowledge from unlabeled operational data through self-prediction and contrastive learning tasks. A customized transformer-based neural network is designed to ensure the efficiency and effectiveness in tabular data analysis and knowledge transfer. Data experiments have been conducted using multiple HVAC datasets considering different data availabilities, self-supervised learning approaches and model architectures. The results validate the capabilities of self-supervised learning in developing reliable HVAC fault classification models. Compared with conventional supervised learning solutions, the methodology proposed not only substantially reduce the data labelling works required, but also improves the fault diagnosis performance by up to 8.44%. The research outcomes are valuable for upgrading predictive modeling protocols in the building field for developing easy-implementation and high-performance data-driven solutions with limited labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoeyyy完成签到,获得积分10
1秒前
Lucas应助WANG采纳,获得10
1秒前
1秒前
1秒前
Xltox完成签到,获得积分10
2秒前
XylonYu完成签到,获得积分10
3秒前
华仔应助碧蓝碧凡采纳,获得10
4秒前
5秒前
超勍发布了新的文献求助10
9秒前
小马甲应助yuanshl1985采纳,获得10
9秒前
zhuxiaonian完成签到,获得积分10
12秒前
田様应助淘气科研采纳,获得10
12秒前
chenyi完成签到,获得积分10
13秒前
zyyyy完成签到,获得积分10
13秒前
奶黄包完成签到 ,获得积分10
13秒前
SYLH应助海阔天空采纳,获得10
13秒前
13秒前
机灵又蓝完成签到,获得积分10
14秒前
张土豆完成签到 ,获得积分10
14秒前
善学以致用应助小王采纳,获得10
14秒前
orang完成签到,获得积分10
15秒前
巧巧艾完成签到,获得积分10
15秒前
16秒前
邵洋完成签到,获得积分10
16秒前
sl发布了新的文献求助10
16秒前
17秒前
小迪迦奥特曼完成签到,获得积分10
17秒前
17秒前
cckk发布了新的文献求助10
18秒前
夏目由美完成签到 ,获得积分10
18秒前
Jasper应助哦哦哦采纳,获得10
19秒前
YYD完成签到,获得积分10
19秒前
超勍完成签到,获得积分10
19秒前
碧蓝碧凡发布了新的文献求助10
20秒前
Popeye应助鹤鸣采纳,获得30
20秒前
YYD发布了新的文献求助10
21秒前
yuanshl1985发布了新的文献求助10
21秒前
积极的黑猫完成签到,获得积分10
22秒前
GB完成签到 ,获得积分10
22秒前
Metx完成签到 ,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029