清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞天大南瓜完成签到,获得积分10
刚刚
刘刘完成签到 ,获得积分10
32秒前
37秒前
new1完成签到,获得积分10
38秒前
jing完成签到,获得积分20
41秒前
大喜喜发布了新的文献求助10
42秒前
沙海沉戈完成签到,获得积分0
48秒前
阿俊完成签到 ,获得积分10
55秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
SciGPT应助ceeray23采纳,获得20
1分钟前
arniu2008完成签到,获得积分20
2分钟前
2分钟前
soilbeginner发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
soilbeginner完成签到,获得积分20
2分钟前
莫miang完成签到,获得积分10
3分钟前
不器完成签到 ,获得积分10
4分钟前
自律完成签到,获得积分10
4分钟前
4分钟前
阿尔法贝塔完成签到 ,获得积分10
4分钟前
黑昼发布了新的文献求助10
5分钟前
天天快乐应助黑昼采纳,获得10
5分钟前
老迟到的友桃完成签到 ,获得积分10
5分钟前
方白秋完成签到,获得积分0
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
菠萝包完成签到 ,获得积分10
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
ceeray23发布了新的文献求助20
8分钟前
怡然自中完成签到 ,获得积分20
9分钟前
完美世界应助科研通管家采纳,获得10
9分钟前
彭于晏应助科研通管家采纳,获得10
9分钟前
9分钟前
溆玉碎兰笑完成签到 ,获得积分10
9分钟前
wtian完成签到,获得积分10
9分钟前
顾矜应助白日睡觉采纳,获得10
10分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771559
捐赠科研通 4614136
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531