Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊笙完成签到 ,获得积分0
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
玺青一生完成签到 ,获得积分10
5秒前
高速旋转老沁完成签到 ,获得积分10
9秒前
凉拌冰阔落完成签到 ,获得积分10
9秒前
郑zhenglanyou完成签到 ,获得积分10
10秒前
沉静的清涟完成签到,获得积分10
12秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
13秒前
啊哈哈哈哈哈完成签到 ,获得积分10
14秒前
14秒前
情怀应助yyy采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
愛研究完成签到,获得积分10
21秒前
光之美少女完成签到 ,获得积分10
22秒前
微笑的若魔完成签到 ,获得积分10
23秒前
123456完成签到 ,获得积分10
24秒前
25秒前
严究生发布了新的文献求助10
27秒前
村长热爱美丽完成签到 ,获得积分10
30秒前
豆豆完成签到 ,获得积分10
32秒前
科研木头人完成签到 ,获得积分10
32秒前
33秒前
34秒前
Sleven完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
39秒前
Alisan完成签到,获得积分10
41秒前
吴总完成签到 ,获得积分10
42秒前
Ying完成签到,获得积分10
45秒前
leaolf应助科研通管家采纳,获得10
45秒前
NexusExplorer应助科研通管家采纳,获得10
45秒前
香蕉觅云应助发发旦旦采纳,获得10
47秒前
Dellamoffy完成签到,获得积分10
47秒前
飞快的冰淇淋完成签到 ,获得积分10
47秒前
8D完成签到,获得积分10
48秒前
48秒前
量子星尘发布了新的文献求助10
50秒前
夜闲安坐完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605