已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
保护野菠萝完成签到,获得积分20
1秒前
4秒前
小二郎应助Michael采纳,获得10
4秒前
6秒前
7秒前
8秒前
梨_完成签到 ,获得积分10
8秒前
单纯的问安完成签到,获得积分10
8秒前
10秒前
曾经寒香发布了新的文献求助10
11秒前
Michael发布了新的文献求助10
13秒前
豌豆苗完成签到 ,获得积分10
13秒前
Ka发布了新的文献求助10
13秒前
Albert007完成签到,获得积分10
13秒前
善学以致用应助茜茜公主采纳,获得10
14秒前
Dawn13443发布了新的文献求助10
15秒前
激动的谷菱完成签到 ,获得积分10
16秒前
Dawn13443完成签到,获得积分10
21秒前
淡然的行完成签到,获得积分10
24秒前
25秒前
yzkkzy发布了新的文献求助30
25秒前
曾经寒香完成签到,获得积分10
25秒前
26秒前
嘿嘿发布了新的文献求助10
26秒前
香橙完成签到,获得积分10
28秒前
微笑的井完成签到 ,获得积分10
28秒前
无语的盈发布了新的文献求助10
29秒前
35秒前
清脆冬日完成签到 ,获得积分10
35秒前
Ka完成签到,获得积分20
36秒前
Ava应助现实的鹏飞采纳,获得10
39秒前
这街上太拥挤完成签到,获得积分10
40秒前
虞智闳发布了新的文献求助10
41秒前
顺心飞绿完成签到,获得积分10
42秒前
阜睿完成签到 ,获得积分10
43秒前
浮游应助zzcres采纳,获得10
45秒前
田様应助吴迪采纳,获得10
45秒前
张兴华关注了科研通微信公众号
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538198
求助须知:如何正确求助?哪些是违规求助? 4625382
关于积分的说明 14595848
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502838
邀请新用户注册赠送积分活动 1481193
关于科研通互助平台的介绍 1452435