亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
23秒前
40秒前
zsmj23完成签到 ,获得积分0
44秒前
54秒前
SciGPT应助科研通管家采纳,获得10
55秒前
Orange应助科研通管家采纳,获得10
55秒前
1分钟前
白羽丫完成签到,获得积分10
1分钟前
正己烷完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
wjp完成签到 ,获得积分10
1分钟前
1分钟前
所所应助Chao采纳,获得10
1分钟前
英俊的铭应助是风动哒采纳,获得10
1分钟前
2分钟前
Chao发布了新的文献求助10
2分钟前
Chao完成签到,获得积分10
2分钟前
ranj发布了新的文献求助30
2分钟前
2分钟前
曲聋五完成签到 ,获得积分0
2分钟前
帅气的安柏应助didi采纳,获得50
2分钟前
Zcl完成签到 ,获得积分20
2分钟前
天真台灯完成签到 ,获得积分10
2分钟前
Lucas应助柏月采纳,获得10
2分钟前
YYL完成签到 ,获得积分10
2分钟前
just完成签到 ,获得积分10
2分钟前
didi发布了新的文献求助10
2分钟前
打打应助谢涛采纳,获得10
2分钟前
2分钟前
路明非发布了新的文献求助10
2分钟前
2分钟前
谢涛发布了新的文献求助10
2分钟前
一念应助科研通管家采纳,获得10
2分钟前
帅气的安柏应助明理匪采纳,获得50
2分钟前
路明非完成签到,获得积分10
2分钟前
去码头整点薯条完成签到 ,获得积分10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137248
求助须知:如何正确求助?哪些是违规求助? 4337098
关于积分的说明 13511051
捐赠科研通 4175627
什么是DOI,文献DOI怎么找? 2289534
邀请新用户注册赠送积分活动 1290077
关于科研通互助平台的介绍 1231706