Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小七发布了新的文献求助10
1秒前
kkqq关注了科研通微信公众号
2秒前
衍乔发布了新的文献求助30
2秒前
杨树发布了新的文献求助10
2秒前
无花果应助淡定香萱采纳,获得10
3秒前
所所应助苹果丝采纳,获得10
3秒前
老水完成签到,获得积分10
4秒前
5秒前
5秒前
心灵美的花卷完成签到,获得积分10
5秒前
6秒前
我是老大应助lalalal采纳,获得10
6秒前
cappuccino完成签到 ,获得积分10
7秒前
7秒前
Akim应助wu采纳,获得10
7秒前
hilknk完成签到,获得积分10
7秒前
hangzhen发布了新的文献求助30
7秒前
tanhaili完成签到,获得积分10
9秒前
zsy111完成签到,获得积分10
9秒前
共享精神应助感性的沉鱼采纳,获得10
10秒前
科研通AI5应助Ophelia采纳,获得30
11秒前
zhengzehong发布了新的文献求助10
11秒前
闪击的云发布了新的文献求助10
11秒前
大模型应助冷酷豌豆采纳,获得10
11秒前
12秒前
852应助研友_戳爷yeah采纳,获得10
12秒前
阿然要努力完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
白云朵儿发布了新的文献求助10
14秒前
15秒前
柴胡完成签到,获得积分10
15秒前
15秒前
SYLH应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
ln发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514919
求助须知:如何正确求助?哪些是违规求助? 3097284
关于积分的说明 9234961
捐赠科研通 2792241
什么是DOI,文献DOI怎么找? 1532370
邀请新用户注册赠送积分活动 712002
科研通“疑难数据库(出版商)”最低求助积分说明 707071