Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Bismarck采纳,获得10
刚刚
CLY完成签到,获得积分10
1秒前
2秒前
rita_sun1969完成签到,获得积分10
3秒前
研友_8K2QJZ完成签到,获得积分10
3秒前
蝴蝶完成签到 ,获得积分10
4秒前
ARIA完成签到 ,获得积分10
4秒前
大橙子发布了新的文献求助10
7秒前
Bismarck完成签到,获得积分20
8秒前
8秒前
爱笑子默完成签到,获得积分10
9秒前
9秒前
一点完成签到,获得积分10
11秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
11秒前
DezhaoWang完成签到,获得积分10
12秒前
知犯何逆发布了新的文献求助10
13秒前
原本完成签到,获得积分10
13秒前
Bismarck发布了新的文献求助10
14秒前
苗条丹南完成签到 ,获得积分10
16秒前
yu完成签到 ,获得积分10
19秒前
skyleon完成签到,获得积分10
19秒前
无心的天真完成签到 ,获得积分10
20秒前
Engen完成签到,获得积分20
20秒前
21秒前
学术小垃圾完成签到,获得积分10
21秒前
dreamwalk完成签到 ,获得积分10
21秒前
黄淮科研小白龙完成签到 ,获得积分10
22秒前
齐嫒琳完成签到,获得积分10
24秒前
研友_Lav0Qn完成签到,获得积分10
24秒前
大橙子发布了新的文献求助10
25秒前
GreenT完成签到,获得积分10
25秒前
鳄鱼队长完成签到,获得积分10
26秒前
Zengyuan完成签到,获得积分10
26秒前
研友_Lav0Qn发布了新的文献求助10
27秒前
perry4rosa完成签到,获得积分0
27秒前
量子星尘发布了新的文献求助10
28秒前
LIFE2020完成签到 ,获得积分10
28秒前
科研人完成签到,获得积分10
29秒前
飞云完成签到 ,获得积分10
30秒前
满天星辰独览完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022