Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助秋水采纳,获得10
刚刚
summer应助大帅采纳,获得10
刚刚
orange发布了新的文献求助10
1秒前
1秒前
傲娇如天发布了新的文献求助10
2秒前
Improve完成签到,获得积分10
2秒前
3秒前
狮子沟核聚变骡子完成签到 ,获得积分10
3秒前
景玉完成签到,获得积分20
3秒前
111舒舒完成签到 ,获得积分10
3秒前
whj完成签到 ,获得积分10
3秒前
An2ni0发布了新的文献求助10
4秒前
4秒前
津津乐道完成签到,获得积分10
5秒前
5秒前
absb发布了新的文献求助10
5秒前
xiangzaier完成签到 ,获得积分10
5秒前
lql完成签到,获得积分10
5秒前
清秀的不言完成签到 ,获得积分10
5秒前
小巧的孤萍完成签到,获得积分20
6秒前
咕嘟咕嘟完成签到,获得积分10
6秒前
球球的铲屎官完成签到,获得积分10
6秒前
ypj9777完成签到,获得积分20
6秒前
6秒前
白羊完成签到 ,获得积分10
7秒前
苏打完成签到,获得积分10
8秒前
大个应助zkl采纳,获得10
8秒前
Stella应助李媛媛采纳,获得30
8秒前
8秒前
yy发布了新的文献求助10
8秒前
AA完成签到 ,获得积分10
8秒前
蜗牛完成签到,获得积分10
8秒前
安静的幻儿完成签到,获得积分10
10秒前
丘比特应助小小邹采纳,获得10
10秒前
10秒前
苏打发布了新的文献求助10
10秒前
JamesPei应助zhanghao采纳,获得10
11秒前
加油干完成签到,获得积分10
12秒前
韩谷子完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445