Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
萧瑟秋风今又是完成签到 ,获得积分10
1秒前
1秒前
2秒前
sugar发布了新的文献求助10
4秒前
Manphie应助mei采纳,获得10
4秒前
忧郁小鸽子完成签到,获得积分10
4秒前
猫小咪完成签到,获得积分10
5秒前
hkh发布了新的文献求助10
5秒前
dy完成签到,获得积分10
6秒前
自信向梦完成签到,获得积分10
7秒前
杂草的生活完成签到,获得积分10
7秒前
能干戒指完成签到,获得积分10
8秒前
确幸完成签到,获得积分10
8秒前
啦啦啦啦完成签到 ,获得积分10
9秒前
踏实凝安完成签到,获得积分10
9秒前
9秒前
Overlap完成签到 ,获得积分10
10秒前
清清清完成签到 ,获得积分10
10秒前
Star完成签到,获得积分10
12秒前
petrichor完成签到,获得积分10
13秒前
怪默完成签到,获得积分10
13秒前
小宁同学发布了新的文献求助10
13秒前
浮游应助xwhl采纳,获得10
13秒前
执着的忆雪完成签到,获得积分10
14秒前
青青完成签到,获得积分10
14秒前
思苇完成签到,获得积分10
14秒前
老张完成签到,获得积分10
14秒前
mengshang完成签到,获得积分10
14秒前
知性的水杯完成签到 ,获得积分10
15秒前
15秒前
球球完成签到,获得积分10
15秒前
15秒前
豆腐完成签到,获得积分10
16秒前
sulin完成签到 ,获得积分10
17秒前
不关歆歆的事完成签到 ,获得积分10
17秒前
瑾辰完成签到,获得积分10
17秒前
尤瑟夫完成签到 ,获得积分10
18秒前
18秒前
LLLKJ完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325782
求助须知:如何正确求助?哪些是违规求助? 4466145
关于积分的说明 13895512
捐赠科研通 4358497
什么是DOI,文献DOI怎么找? 2394090
邀请新用户注册赠送积分活动 1387526
关于科研通互助平台的介绍 1358445