亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning: A review

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Hanae Moussaoui,Nabil El Akkad,Mohamed Benslimane
出处
期刊:International Journal of Computing and Digital Systems [Deanship of Scientific Research]
卷期号:13 (1): 1465-1483 被引量:11
标识
DOI:10.12785/ijcds/1301118
摘要

Reinforcement learning is considered a sort of machine learning that acquires knowledge of solving problems using the trial-and-error technique.The process starts with the main actor that is the agent interacting with a given environment and attempting to achieve a multi-step goal within this environment.The environment is characterized by a state that the agent detects and examines.On the other hand, due to the agent's several actions, the environment's state changes according to these modifications.Eventually, and at this stage, the agent gets reward signals as it proceeds nearer to its goal.The agent uses these rewards signals to determine which actions were successful and which actions were not.The state action is then repeated and the reward is looped until the agent learns how to operate effectively within the environment using the trial-and-error concept.The agent's main objective is to learn how to always choose the right action given any state of the environment that leads it closer to its goal.In this paper, we gathered all the methods used in the literature.Multi-armed bandits, the Markov decision process, Monte Carlo methods, dynamic programming as well as temporal-difference learning are some of the corresponding methods used to solve reinforcement learning issues.The current paper is organized and structured as follows: we'll start with an introduction followed by a reinforcement learning section where we discussed all the methods and techniques used in the literature.Furthermore, the third section will be about deep reinforcement learning, here we gathered deep reinforcement learning techniques.In the fourth section, we will summarize the reinforcement and deep reinforcement learning algorithms in detail.Furthermore, we will finalize the article with a discussion and a conclusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joanna完成签到,获得积分10
3秒前
棠臻完成签到 ,获得积分10
3秒前
Joanna发布了新的文献求助10
7秒前
shennie完成签到,获得积分10
7秒前
study1111发布了新的文献求助30
9秒前
Qian发布了新的文献求助10
9秒前
Leonard应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
gym完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
susu发布了新的文献求助10
15秒前
dcy完成签到,获得积分10
17秒前
沧海静音发布了新的文献求助10
18秒前
科目三应助gym采纳,获得10
18秒前
19秒前
糊涂的笑天完成签到 ,获得积分10
20秒前
wyh发布了新的文献求助10
20秒前
小马哥完成签到,获得积分10
22秒前
嵇元容发布了新的文献求助10
23秒前
susu完成签到,获得积分20
24秒前
陈末应助study1111采纳,获得10
25秒前
新123完成签到,获得积分10
25秒前
wyh完成签到,获得积分10
25秒前
充电宝应助wyh采纳,获得10
31秒前
Hello应助susu采纳,获得10
32秒前
36秒前
histamin完成签到,获得积分10
36秒前
Layen完成签到,获得积分20
36秒前
kbcbwb2002完成签到,获得积分0
36秒前
知足的憨人*-*完成签到,获得积分10
37秒前
荆玉豪完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564805
关于积分的说明 14296938
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535