粘度
计算流体力学
材料科学
理论(学习稳定性)
数字光处理
工作(物理)
过程(计算)
图层(电子)
沉淀
沉降时间
计算机科学
机械
复合材料
机械工程
光学
物理
工程类
热力学
投影机
控制工程
机器学习
阶跃响应
操作系统
作者
Hesam Moghadasi,Md. Tusher Mollah,Deepak Marla,Hamid Saffari,Jon Spangenberg
出处
期刊:Polymers
[MDPI AG]
日期:2023-05-26
卷期号:15 (11): 2459-2459
被引量:1
标识
DOI:10.3390/polym15112459
摘要
Digital light processing (DLP) as a vat photopolymerization technique is one of the most popular three-dimensional (3D) printing methods, where chains are formed between liquid photocurable resin molecules to crosslink them and solidify the liquid resin using ultraviolet light. The DLP technique is inherently complex and the part accuracy depends on the process parameters that have to be chosen based on the fluid (resin) properties. In the present work, computational fluid dynamics (CFD) simulations are presented for top-down DLP as photocuring 3D printing. The effects of fluid viscosity, travelling speed of build part, travelling speed ratio (ratio of the up-to-down traveling speeds of build part), printed layer thickness, and travel distance considering 13 various cases are scrutinized by the developed model to obtain a stability time of fluid interface. The stability time describes the time it takes for the fluid interface to show minimum fluctuations. According to the simulations, a higher viscosity leads to prints with higher stability time. However, lower stability times in the printed layers are caused by a higher traveling speed ratio (TSR). The variation in settling times with TSR is extremely small in comparison to that of viscosity and travelling speed variations. As a result, a declining trend can be detected for the stability time by increasing the printed layer thickness, while by enhancing the travel distance values, the stability time demonstrated a descending pattern. In total, it was revealed that it is essential to choose optimal process parameters for achieving practical results. Moreover, the numerical model can assist in the optimizing the process parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI